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I. Executive summary 

Motivation: Understanding the fundamental principles underlying the functional robustness of 
Techno-Social Networks (TSN-s) is a tall, but inevitable challenge. As the society becomes 
increasingly dependent on infrastructure transport networks, the implications of large-scale 
disruptions (e.g., due to WMD events) of these systems also become increasingly important. In 
our ever more connected and interdependent world, small perturbations can have far reaching 
effects. Large-scale events, such as cascading failures (e.g., the East coast blackout on Aug. 14, 
2003) or epidemics (SARS and most recently Ebola) are typical to complex networks, and they 
serve as warnings about the type of behaviors one can expect in strongly interconnected 
systems. As a result, we demand ever-increasing predictive power and ability to evaluate the 
impact of potential failures. There has been, however, little to no mathematical and analytical 
methodology that would allow a realistic assessment of the consequences of large-scale failures 
in critical infrastructure TSN-s, largely due to two major aspects of these networks: i) Multivariate 
and heterogeneous constraints. Real-world TSNs typically operate under a wide range of 
constraints and limitations imposed both from the technical (physical) side and the social (usage) 
side. Physical constraints include geographical embeddedness; energy limitations (transportation 
costs, battery life); device capacity, latency and bandwidth, while usage constraints include 
software limitations, communication protocols and regulations. To advance empirical 
applications, network models will need to address these constraints since they strongly influence 
the response and failure modes of a network in case of WMDs. The dynamics of constrained 
complex networks, especially if they are directed, weighted and hierarchical are not well 
understood. The adaptive capabilities, including recovery of TSNs facing major destructive events 
has been a relatively uncharted territory.  
ii) Multiscale nature. Most of the TSNs are characterized by inherently complex processes
involving many different scales in time and space, as well as in the operational and dynamical 
attributes of network elements. These features represent major challenges in our modeling and 
predictive understanding of TSNs. When is it possible to average small scales into large scale 
effects? When the addition of details and new scales induce a change in the survival and recovery 
behavior of the network? How do the various scales suffer and adapt to the same damage?  
Addressing some of these challenges, our project has developed:  

A. Quantitative multiscale methods for network analysis using large-scale real-world TSN 
datasets;  

B. Efficient algorithms for TSN vulnerability and robustness analysis; 
C. Methods for subsystem diagnosis with limited or no information available directly from the 

subsystem;  
D. Studies into efficient, distributed and adaptive defense and recovery strategies for 

massively damaged or compromised TSNs, using simulations on synthetic networks. 
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Background: Today’s world is supported by organically evolving network structures, which, 
transport and store various entities, including materials, energy, information and people across 
vastly varying spatial and temporal scales. Although physical transport networks have been 
around for a while, communication and computing infrastructure networks have been forming a 
dense web around those in the past two decades. All these networks are used and driven by 
humans, and thus by the network of relations among them, the Social Network (SN). While the 
technological advancements provide us with tools to better measure and quantify social 
interactions, they, on the other hand influence social networks by providing novel ways for 
human interactions. Technology and social organization mutually shape each other leading to 
the formation of multiscale dynamic techno-social networks (TSNs). This human-machine 
symbiosis and mutual exploitation becomes even more accentuated in network centric warfare 
and battlefield systems. The role of networks in warfare moves increasingly from a supporting 
position to becoming the weapon itself. As threats relocate from open battlefields towards more 
covert urban areas, the theater of operations becomes very heterogeneous, requiring global 
surveillance all the time. Engaging enemies under these circumstances is only possible by 
networked systems that monitor, record, assess and adapt to situations in real-time by 
integrating information from all scales, as envisioned by the Global Information Grid (GIG) project 
of DoD. Such networks necessarily have to possess flexible connectivity, ideally to be able to self-
optimize, self-diagnose and self-heal. While the studies performed in this work with data coming 
from the civilian sector of networks, the fundamental conclusions, along with the mathematical 
results, methods and algorithms developed here are applicable to DoD networks as well.  
 
Real-world Techno-Social Networks (TSN): These networks are heterogeneous, multiscale, 
with both static and mobile components and can be characterized by 7 major elements and the 
interactions among them: 

1. Spatially distributed Resource-Locations (RLs). These are spatial regions where people 
spend most of their time, including buildings in a city, cities within a county, counties 
within states, and finally countries, spanning scales from meters to thousands of km-s. The 
distribution of RLs is heterogeneous, fractal-like, determined by the distribution of 
resources, natural and man-made. 

2. Transportation networks (TN). These connect the RLs, and thus span multiple scales: from 
streets, to roadways, to highways, and finally to airline routes. 

3. Humans as transport agents. People are in constant motion between the RLs, using the 
transportation routes and represent the flow in the transportation network.  

4. Human proximity networks (PN). Most of the time, people are co-located with other people 
(within the RLs), forming dynamic proximity networks, which serve as substrate to the 
spread of bio-pathogens.  
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5. Social networks (SN). This is the network of “who knows who” and it drives/influences the 
communication as well as the physical mobility of people on the transportation network. 

6. Communication Infrastructure Networks (CIN). A large portion of information is transmitted 
via fixed infrastructures including the Internet, wire-line phone/base-station and the 
satellite network. The user nodes are at RLs, with links forming a complex, multiscale 
network, different from TN.  

7. Mobile Communication Networks (MCN). Mobile devices allow en-route communications 
between people. Since cell-phone usage is logged and cell-phones can be geo-located, 
they serve as massive (in volume), longitudinal probes both into the social network and the 
mobility patterns of people. Ad-hoc mobile networks use the (ad-hoc) connectivity 
between the radio ranges of devices with broadcast capabilities to transmit messages.  

 
WMD event classification from a network perspective: In the following we consider two 
major types of WMD events: a) Type G-WMD which corresponds to massive, but geo-localized 
events such as nuclear, radiological or massive release of bio or chemical agents (anthrax, 
mustard, Sarin, etc.). and b) Type E-WMD, which is a bio-agent (e.g., smallpox) covertly introduced 
into the population to induce wide-spread epidemic; These events affect TSNs in very different 
but specific ways, and they must be treated accordingly. However, the tools developed in this 
project will allow the analysts to test in-silico for arbitrary failure scenarios. 
 
TSN-s and their defense present the ultimate challenge in network research due to the number of 
coupled components, their relationships and the wide range of temporal and spatial scales 
involved. The physical and social components are intertwined and they influence each other 
especially under WMD stressors. The consequences of major events are not localized to the 
attack region only: information spreads almost instantaneously on the network modifying both 
the mobility and communication patterns of people, resulting in network overload in the 
transportation (TN) and as well as the communication (CIN/MCN) components, and potentially 
their failure.   
 
Relevance: The performed work addresses directly several of the announced objectives of the 
call under Topic A, namely “Advancing the knowledge of network theory for understanding 
robustness” by developing an understanding for the fundamentals of physical and social 
networks in order to help develop methods that optimize the robustness of these systems and to 
provide tools that predict the consequences of WMD caused disruptions. The tasks presented 
here methodically tackle the research areas of interest of the call, as follows: The development of 
efficient methods and tools for topological and dynamical analysis of composite physical/social 
networks; The development of synthetic models which faithfully capture the essential structural 
and dynamical features of multiscale composite networks including their vulnerability and 
robustness properties; Mathematical formulation of these features into laws that govern the 
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dynamics of these systems across all the scales; Validation of the results on several real-world 
large-scale TSN networks; Development of computational tools for assessing TSN response to 
various damage scenarios, including E(G)-WMD events. The real-world network data used for 
research in this project are actually part of the existing human infrastructures for communication 
and transport. Thus our results on robustness, vulnerability and adaptive recovery, and in case of 
a WMD event, our recommendations and guidance should apply directly to these real-world 
systems.  Next we briefly highlight some of the work done during this project, that has direct 
relevance to DoD, from both the G-WMD and E-WMD areas, in particular, on massive 
transportation networks and contagion spread such as Ebola. However, these highlighted results 
were enabled by a large body of technical results that can be found in the rest of the document 
and in the publications generated. These technical results are both mathematical and algorithmic 
in nature and their applicability extends beyond DoD applications, they are valuable for the 
whole of network science community. As network science is arguably the most interdisciplinary 
subject (as many, wildly different systems can be represented by networks), our results are 
applicable to a wide range of subject areas and topics (some of our methods e.g., have been 
applied in neuroscience). 

G-WMD related research highlights	  
Spatial transportation networks, and in particular, the highway transportation network forms the 
vascular system of our society. It has evolved organically, and its properties encode the 
modalities in which us and our 
economy interacts across space, 
ensuring the vitality of our society. 
Understanding the flow dynamics in 
such networks is crucial for many 
reasons, including the prediction of 
epidemic patterns (human mobility 
patterns determine the evolution of 
disease spread) and the smart design 
of spatial infrastructure networks. 
From a DoD perspective, such an 
understanding is key for assessing the 
effects of WMD induced disruptions to 
the transportation system, and on the 
flipside, helping with generating 
strategies of attack on adversarial 
transportation networks. As we show 
in our work, the effects of a geo-
localized WMD attack (such as a 

 
Fig I. Changes in average daily traffic in the highway transportation network, due to 
a  G-WMD event (center of image) approximately equivalent to the detonation of a 
B53 strategic nuclear weapon in a single location. The image overlays the effects 
from 1000 such G-WMD events with epicenters chosen at random locations. The 
figure shows that there are specific locations in the network, where such an event 
would have significant and far reaching (spanning to half the US) consequences. 
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nuclear event) are not constrained only to within the immediate vicinity of the network, but it 
can spread network-wide, much like cracks in a brittle material can propagate throughout the 
whole material, in spite the fact that their origin may be a point-like shock. While such long-range 
propagation of effects is unsurprising in networks that possess many shortcuts, such as in airline 
transportation (we are all familiar with the fact that delays in a major airport can have ripple 
effects on the whole network), the fact that they also occur in roadway transportation (which is is 
where massive transportation of goods, essential for the functioning of a whole society, takes 
place) is rather surprising and counter-intuitive, because roadway networks are spatial networks 
without shortcuts. Figure I. shows the changes in average daily traffic after the detonation of a 
B53 strategic nuclear weapon of 9MT yield, rendering the transportation network unusable and 
unapproachable within a 20km radius region around the epicenter. In this plot we overlaid the 
effects from 1000 such in-silico experiments corresponding to 1000 epicenters chosen 
approximately at random from the continental US. As one can see, significant effects from some 
G-WMD events can be registered even out to 600 miles from the epicenter, effectively spanning 
half the US. The effects of such G-WMD events need to be studied both in volume and extent. 
While, clearly, high density population areas, such as metropolitan areas present vulnerabilities 
en-mass, we have found that, contrary to intuition, there are hot-spots in the network, where 
such events would have significant long-range effects in spite the fact the epicenters themselves 
may have little or no population. If these long-range effects overlap with roadway segments used 
for transportation of critical materials (e.g., they have to have a certain width), then as a response 
the system has to invest in providing alternative, adequate routes. However, building new 
roadways, is not only costly, but also takes a certain amount of time, and these can be 
significantly disruptive effects. A crucial task is then finding the circumstances or properties 
under which an epicenter generates long-range effects. To be able to provide answers to such 
questions, one needs to have a first-principles based understanding of the roadway 
transportation network, one that is not based on fitting parameters. The reason for this is that 
once the network changes (due to G-WMD events), the fitting parameters are also expected to 
change, and we cannot know those a-priori. Moreover, for this knowledge to be useful, it cannot 
be based on fitting parameters characteristic to one network or one country. Thus, before we 
tested disruption scenarios, we needed first to understand the flow dynamics in roadway 
transportation networks, as determined by the distribution of the population, the existing 
network of highways and human mobility properties.   
 
The quantitative prediction of flows requires the solution of two fundamental problems. One is of 
mainly socio-demographic nature and it entails determining the number of individuals travelling 
between two given locations (The Mobility Law) and the other is a network distribution problem 
(The Flux Distribution problem) and it entails assigning the network paths to the individuals that 
are travelling between the locations. The first problem traditionally has been treated using the 
so-called gravity law and most recently, the radiation law. The radiation law [1] was derived from 
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a simple social-demographic model of job-search and it has been shown to describe much better 
the number of people wanting to travel between two sites than the gravity law, and unlike the 
gravity law (and its variants) it has no fitting parameters. However, as we have shown, it is 
inadequate to predict flows in networks, as the radiation model does not couple the flow 
dynamics with the underlying network. The Flux Distribution problem is a network problem, but 
it has a social aspect as well, in that it depends on the travel cost criterion that individuals use 
when selecting a travel path between source and destination. There are two main criteria in this 
case, one being travel distance and the other being travel time. In our work we show that these 
two fundamental problems cannot be treated separately if one wants to realistically predict 
network flows, see Fig II. We demonstrate that the Mobility Law must take into account the cost 
of travel on the network. Our model includes a general cost function that allows us to compare 
predictions based on arbitrary cost criteria for travel, including those based on travel distance 
and travel time.  Using a large-scale US highway network dataset from MIT-s database for 

 
Fig II. Coupling between population distribution and roadway network flows in the continental US. 
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validation, we show that the travel time based cost predictions achieve a significantly better 
agreement with real traffic than those based on travel distance alone. This indicates that people 
preponderantly choose paths based on time to destination rather than distance to destination. 
While this is intuitive, we are demonstrating it quantitatively for the first time. Applying our 
model on the US roadway network database we discovered that the mobility fluxes obey a self-
similar scaling law that holds over seven orders of magnitude. We show that this scaling form is 
universal and derive its exponent (1.5). We show both numerically and analytically that when 
using the original radiation law (that is when the network structure is not taken into account), the 
corresponding scaling exponent becomes 1.3 rather than the correct 1.5. We have then exploited 
this scaling law to formulate an efficient flux distribution algorithm (the 2nd problem). We have 
published these results in Nature Communications [2].  
 
From a mathematical and algorithmic point of view we have contributed with several results, as 
described in the rest of the report. These include methods for modeling networks based on 
partial information on their structure, such as degree-based network construction and sampling 
and maximum entropy based modeling methods. Related to the latter we have solved the 
degeneracy problem that was open for nearly 30 years. Through our range-limited betweenness 
algorithm we have provided a multiscale decomposition of the distribution of paths in a network. 
Additionally, we have generated the mathematics and accompanying efficient algorithms that 
can identify the structural vulnerability backbone of a given network. This backbone is the 
smallest structure, which when damaged, caused the largest disruption in the network (the 
shattering problem). The latter algorithms have seen translational applications, for example, in 
brain neuronal networks.  

E-WMD related research highlights 

In our project we have focused on a number 
of issues related to bio-agent or Epidemic 
(e.g., smallpox) events - E-WMD - covertly 
introduced into the population to induce 
wide-spread epidemic. The work was focused 
on providing non-incremental advances to 
our understanding and predictability power 
for the resilience and robustness of complex 
interconnected techno-social networks in the 
case of threats such as the spreading of highly 
pathogenic agents. This implies coping with 
the inherent multiscale nature of techno-
social networks, and face the challenge of 
developing novel basic mathematical 
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Fig. III. : Multiscale mobility and population networks. 
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approaches to theories and algorithms able to cope with a wide range of scale-mixing dynamics; 
from the local commuting of people to international travel, from the individual to the population 
level dynamic of biological processes.  
In the case of E-WMD events we have tackled the modeling challenges by developing a general 
analytical framework for the understanding of multiscale interactions in reaction-diffusion models. 
In particular, we developed a method for the multiscale integration of mobility networks in the 
analysis of potentially pandemic pathogens spread. The results published in several papers, 
including PNAS [3], and Science [4], defined the basic structure of a general computational 
platform – the global Epidemic and mobility model (GLEAM) - for the study of global pandemic 
and E-WMD events.  
 
In order to address the resilience of structured population to EMWD we have tackled a number of 
specific features that characterizes how contagion processes transition from local (contained) to 
global threats. In particular, we have addressed the following research questions that are related 
to the dynamic and evolution of technological and social networks: 
 

• Phenomenology of competing dynamical processes in networks 
• Modeling human behavioral responses to the large-scale spreading of infectious diseases 

• Tipping points in spreading and communication processes 
 
The work in this areas have led to the developing of a coherent framework for the understanding 
of the global invasion threshold of pathogens in networked population, the effect of behavioral 
adaptation and competing spreading dynamics in contagion processes, and the development of 
novel algorithms for the computational modeling of global epidemic events such as pandemic 

Figure IV. : Vulnerability simulator for potential pandemic pathogens with specific plug-ins for E-WMD events. 
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and E-WMD. The results have been published in several papers, including high impact journals 
such as in Nature Physics [5].  

 
Another main goal targeted by our project was to address the problem of the non-local effects 
and response induced by localized WMD attacks in complex multiscale networks. In this area we 
focused on the level of threat for a specific country in the case of a bioterrorist attack outside its 
borders, namely, a secondary E-WMD threat. We were interested in the quantitative assessment 
of the risk of the internationalization of the outbreak and the number of countries affected. In 
particular, we assumed that the bio-WMD event is localized in an area where controllability 
cannot be achieved and develop appropriate strategies that focus on the long-range effect of the 
event and halt the spreading at the global level.  The results obtained show that biological 
targeted attacks on a single country or city can result in a global threat. In particular we were in 
the position to quantitatively describe the level of threat for USA in the case of a bioterrorist 
attack outside its borders, namely, a European country such as UK or France (secondary E-WMD 
threat). This work opens the way to more refined study defining novel strategies for the 
containment of non-local intentional/accidental release of potential pandemic pathogens (i.e. 
effect on the US soil of a bioterrorist attack in a foreign country). The results of our work have 
been published in interdisciplinary journals [Scientific Reports 3, 810 (2013); Scientific Reports 1, 
62 (2011); BMC I. Diseases 11, 37 (2011)] and we have also implemented plug-ins and tutorial for 
the use of the GLEAMviz simulator in the study of smallpox-like E-WMD events.  This 
computational tool is publicly available online (www.gleamviz.org) and consists of a simulation 
component and a suite of analysis tools.  

Figure V.: Left- Projections for the number of possible importation of ebola cases in top risk countries. Right- projections for the evolution of the 
outbreak in the West-African countries. 
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The theoretical understanding of socio-technical networks properties and dynamics and the 
modeling tools developed during the project are of general interest and applications in the 
context of biological threats, as proven by work done during the project for two major epidemics: 
the H1N1-2009 pandemic, and the Ebola virus West Africa epidemic.  
 
During both events the results achieved during the project have been put to work to provide 
real-time analysis of the epidemic unfolding and the risk of international spread of the pathogen. 
Interestingly, these applications allowed us to advance on specific points of the planned work by 
providing real-world scenarios and validation data. In particular, we capitalized on the work done 
on the non-local effects and response induced by localized WMD attacks to provide real-time 
analysis of the 2014 Ebola epidemic in West Africa and the associated risk of international spread. 
In order to assess the likelihood of the international diffusion of the epidemic we have used a 
specific Ebola Virus Disease (EVD) model that considers explicitly that Ebola transmissions occur 
in the general community, in hospital settings, and during funeral rites. This model has been 
used to provide estimates for the growth of the epidemic in West Africa, the probability and 
expected number of Ebola virus disease case importation in countries across the world. Notably, 
the results obtained on the EVD epidemic has been communicated to a number of governmental 
and non-governmental agencies and used by the World Bank in their reports on the economic 
impact of the 2014 Ebola epidemic for West Africa1. In order to improve the spatial resolution and 
realism of the within-country analysis we have also a spatial agent based model based on a 
synthetic structured population of Liberia generating a large-scale networks of the population 
contacts. We used the model to project the spatiotemporal spreading of the disease and to 
disentangle the effect of different interventions including Ebola treatment unit availability, and 
safe burial procedures. The results, published in PLOS Curr. Outbreaks, Euroseurveillance and 
Lancet Infectious Diseases, quantified the differences in the results obtained by the use of 
different mobility proxies and shown that the methodologies developed during the project can 
be used in real time situation –like the EVD outbreak – to provide quantitative indications on the 
local and global spreading of biological threats.  

                                                        
1 World Bank. 2014. The economic impact of the 2014 Ebola epidemic: short and medium term estimates for 
West Africa. Washington, DC: World Bank Group. 
http://documents.worldbank.org/curated/en/2014/10/20270083/economic-impact-2014-ebola-epidemic-
short-medium-term-estimates-west-africa 
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II. Dissemination, educational and outreach activities 

As this was a highly interdisciplinary project we have placed special effort in disseminating the 
results achieved during the grant both within the group of our peers and outside the circle of 
technical practitioners. In terms of publications we have also been targeting broad readership 
journals to ensure dissemination across a wide range of scientific communities. Along with the 
publication outlet we have made a specific effort to be present our results in annual top-ranked 
conferences and other events that have gathered international experts in the area of complex 
networks.  
 
Presentations given (selected):  
 

• Modeling the Spread and Control of Ebola in West Africa: Predictions, Surveillance and 
Interventions, Georgia tech, Atlanta January 21-23, 2015 (A.Vespignani, Invited panelist 
and presenter). 

• SIAM Conference on Applications of Dynamical Systems, May 17-21 (2015), Snowbird, 
Utah (Z. Toroczkai, invited speaker). 

• “Spatial modeling of Ebola Virus Disease” London School of Tropical Medicine, London, 
England, Feb. 16-18 2015 (A. Vespignani invited talk) 

• SIAM Conference on Computational Science, Mar 14-18 (2015), Salt Lake City, Utah (Z. 
Toroczkai, invited speaker). 

• "Human mobility and the spreading of infectious disease", NETMOB 2015, MIT Media Lab, 
Boston MA, April 8th (2015) (A. Vespignani keynote speaker) 

• Center for Nonlinear Studies (CNLS) Colloquium, Los Alamos National Laboratory, NM, Feb 
10, 2015. (Z. Toroczkai) 

• “Transportation Networks and the spread of emerging infectious diseases”, European 
Conference on Complex Systems, September 29, 2014, Comptrans workshop, Lucca Italy 
(A.Vespignani, keynote speaker). 

• European Conference on Complex Systems (ECCS'14). Institue for Advanced Studies, 
Lucca, Italy, Sep 24, 2014. (Z. Toroczkai, invited speaker) 

• International Conference on Statistical Physics, Rhodes, Greece, Jul 7-14, 2014. (Z. 
Toroczkai, invited speaker) 

• Next Generation Surveillance for the Next Pandemic, Santa-Fe Institute, Santa Fe, 19-22 
May 2014 (A. Vespignani, invited talk) 

• CompleNet 2014, Bologna, Italy, March 12-14, 2014 (A. Vespignani keynote speaker) 
• 5th Workshop on information in Networks, NYU, October 4-5 2013 (A. Vespignani plenary 

speaker) 
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• Digital Surveillance Meeting, CDC, Atlanta, August 6 (2013) (A. Vespignani invited talk) 
• ARS'13 International Workshop “Networks in space and time: Models, Data collection and 

Applications”, Rome Italy, June 20-22, 2013. (A. Vespignani Keynote talk) 
• IWSOS, 7th International Workshop on Self-Organizing Systems, Palma de Mallorca, Spain, 

May 9-10, 2013. (A. Vespignani Keynote talk) 
• SIAM Conference on Applications of Dynamical Systems, May 19-23, 2013, Snowbird Utah. 

Invited presentation by Z. Toroczkai on modeling network traffic and damage 
consequences. 

• APS March Meeting, Invited Session: Statistical Physics for Systemic Risk and 
Infrastructural Interdependencies, Baltimore, Maryland, March 18–22, 2013 (A. Vespignani 
invited talk) 

• AAAS 2013 annual Meeting, Predictability: from physical to Data Sciences, Boston, 
February 16, 2013 (A. Vespignani invited talk) 

• 5th Annual Global Empowerment Meeting (GEM12), Harvard University, Boston, October 
24 - 25, 2012 (A. Vespignani invited talk) 

• MAPCON12. Max-Planck Institut fur Physik Komplexer Systeme, International Workshop: 
Mathematical Physics of Complex Networks: From Graph Theory to Biological Physics. 
May 14 - 18, 2012, Dresden, Germany. (Z Toroczkai, invited talk) 

• NICO Distinguished Speaker Series, Northwestern University, Evanston, October 10 - 11, 
2012 (A. Vespignani invited talk) 

• BECS Seminar, Department of Biomedical Engineering and Computational Science, Aalto 
University School of Science. May 28, 2012. (Z Toroczkai, invited talk) 

• Workshop on Information in Networks (WIN) 2011, New York City, September 28 - 29, 
2012 (A. Vespignani plenary speaker)  

• International Workshop on Agent-Based Models and Complex Techno-Social SystemsETH 
Zurich (Switzerland), July 2-4, 2012. (A.Vespignani, Keynote talk) 

• NSF workshop: Workshop on Complexity Science Applied to Coupled Infrastructure 
Systems (InfraPlex), Martha's Vineyard, June 3-4, 2012. (A. Vespignani, Invited Talk).   

• NetSci 2011, The International School and Conference on Network Science, Budapest, 6-
10 June, 2011 (A. Vespignani, Invited Talk). 

• CCNR Seminar, Northeastern University, March 21, 2011, Boston, MA (Z Toroczkai) 
• "Frontiers in multiscale computational modeling for zoonotic epidemics", Kansas City, 

October 10-12, 2011 (A.Vespignani, Invited talk) 
• Workshop "Data Science and Epidemiology", Center for Infectious Disease Dynamics 

(CIDD) at Penn State University, October 6 and 7, 2011 (A.Vespignani, Invited talk).  
• Center for Scientific Computation & Mathematical Modeling (CSCAMM) Nonlinear 

Dynamics of Networks, April 7, 2010, University of Maryland, College Park (A.Vespignani, 
Invited talk). 
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• SAMSI Complex Networks Opening Workshop, Aug. 29 - Sep 1, 2010, NC (Z Toroczkai, 
invited speaker) 

• Socially Coupled Systems & Informatics-Science, Computing and Decision Making in a 
Complex Interdependent World 2010 Conference, Old Town Alexandria, VA, July 12-14, 
2010 (A. Vespignani, Invited Speaker). 

• Harvard University, Beth Israel Deaconess Med. Center, seminar, June 21, 2010, Boston (Z. 
Toroczkai). 

•  Connecting the Dots Symposium, Harvard University, Cambridge, MA, October 22, 2010 
(A.Vespignani, keynote speaker). 

• Information Theory and Applications Workshop, Jan 01-Feb 5, 2010, University of 
California San Diego. (Z. Toroczkai, invited speaker). 

• University of South Carolina, Mathematics Colloquium, Apr 22, 2010, Columbia. (Z. 
Toroczkai) 

 
Over the years we have also made a particular outreach effort to communities outside the 
academic one. This includes efforts to start a dialogue with policy makers and stakeholders in 
governmental and non-governmental agencies interested to the resilience of complex socio-
technical networks.  

 
• Journee scientifique Investissements d'Avenir de l'Universite de Lyon, “La complexite: 

quels defis pour demain?", Lyon, France, Nov 5, 2014. - Public lecture by Z. Toroczkai. 
• A. Vespignani, Congress of the United States briefing. ““Harnessing Complex Networks to 

Solve the Nation’s Grand Challenges”, Washington, DC, Sept. 10, 2013. 
• International Meeting "Complex Systems Analysis: Advancing Health System Policy 

Design and Planning", Rockefeller Foundation, Bellagio Center, Italy, September 24 - 28, 
2012 (A.Vespignani, Panelist). 

• 39th General Assembly of the Geneva Association, Washington D.C. June 6-9, 2012 (A. 
Vespignani, Invited presentation) 

• First Global Symposium on Health Systems Research, Session on complex systems, 
Montreaux, Switzerland November 16-19, 2010 (A.Vespignani, Panelist). 

• Influenza H1N1 modeling working group meeting, European Center for Disease Control 
ECDC, Stockholm, 19 October 2010 (A.Vespignani, Panelist). 

 
We have also made efforts to disseminate the results of the project at prominent summer 
schools, Advanced Master programs and other educational and training programs such as  

 
• Modeling and Forecast of Network-Driven Contagion Processes”, American Society for 

Microbiology Conference for Undergraduate Educators (ASMCUE), Danvers MA, May 15-
18, 2014 (A. Vespignani Invited Talk). 
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• The 2015 Summer Institute in Statistics and Modeling in Infectious Diseases (SISMID), 
University of Washington in Seattle, Seattle July 12-15, 2015. (A.Vespignani, Instructor of 
the module “stochastic simulation methods) 

• The 2014 Summer Institute in Statistics and Modeling in Infectious Diseases (SISMID), 
University of Washington in Seattle, Seattle July 15-18, 2014. (A.Vespignani, Instructor of 
the module “stochastic simulation methods) 

• NetSci2013, International School and Conference on Network Science, June 3-7, 2013, 
Copenhagen, Denmark. Selected talk by student Y. Ren on the extended radiation model. 
Advisor Z. Toroczkai. 

• The 2013 Summer Institute in Statistics and Modeling in Infectious Diseases (SISMID), 
Seattle July 16-19, 2013, University of Washington in Seattle. (A.Vespignani, Instructor of 
the module “stochastic simulation methods) 

• 2012 Summer Institute in Statistics and Modeling in Infectious Diseases (SISMID), 9-25 July 
2012, University of Washington in Seattle. (A.Vespignani, Instructor of the module 
“stochastic simulation methods) 

• The 2011 Summer Institute in Statistics and Modeling in Infectious Diseases (SISMID), June 
13-29, 2011, University of Washington in Seattle. (A.Vespignani, Instructor of the module 
“stochastic simulation methods) 

• Master's class: From Data to Decision, British Columbia Center for Disease Control, 
Vancouver, May 30-June 1st, 2012 (A.Vespignani, presenting a module on epidemic 
modeling). 

• NetSci 2011. The International School and Conference on Network Science. School 
lecturer/instructor and speaker (Z. Toroczkai). 6-10 Jun 2011, Budapest, Hungary 

 

Theses, dissertations 
During the life of the project we have supported a number of graduate and post doctoral 
students who have benefited of the training and professional development offered by working 
on the project. Students and post doctoral collaborators have acquired new skills in a wide range 
of areas, including of data mining, data visualization, computational methods, mathematics, 
Network Science, Statistical mechanics and High Performance computing. Domain specific 
knowledge have been provided to students in the areas of complex networks, contagion 
processes, reaction-diffusion systems. Below we provide a list of graduate students and post 
doctoral associates funded by the project and their current position: 
  

• Dr. Y. Ren (Physics PhD, ND, 2015): “Betweenness Centrality and its Applications from 
Modeling Traffic Flows to Network Community Detection”. Advisor: Z. Toroczkai, currently 
postdoc at Virginia Bioinformatics Institute 
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• Dr. Bruno Goncalves, currently Professor at Marseille University, France and Data Science 
fellow at NYU's Center for Data Science. Advisor: A. Vespignani 

• Dr. S. Pandit (postdoctoral associate at ND), 2011. Current position: industry. Advisor: Z. 
Toroczkai. 

• Dr. Fabio Ciulla, (Physics PhD, NEU, 2015): “Diffusion Processes in Geographical Networks”, 
currently Data Scientist at QUID, San Francisco Ca. Advisor: A. Vespignani. 

• Dr. Maria Ercsey-Ravasz (postdoctoral associate at ND), currently faculty at Babes-Bolyai 
University.  

• Dr. Hao Hu, (Physics PhD, IU, 2010): “Reaction-Diffusion Process and the Modeling of the 
Spatial Spread of Infectious Diseases”. Currently Sr. Research Manager at the Institute for 
Disease Modeling, Seattle. Advisor: A. Vespignani 

• M. Varga (physics graduate student, ND) expected to graduate in 2015. Advisor: Z. 
Toroczkai. 

• Dr. Ana Pastore Y Piontti, currently Research Associate at Northeastern University. Advisor: 
A. Vespignani 

• Dr. Qian Zhang, currently Research Associate at Northeastern University. Advisor: A. 
Vespignani 

• A. Strathman (Physics PhD, ND, 2013): “Applications of statistical mechanics to the 
modeling of social networks.” Advisor: Z. Toroczkai 

• H. Kim (Physics PhD, ND, 2011). Currently research at University of Arizona. Advisor: Z. 
Toroczkai. 

• A. Asztalos (Physics PhD, ND, 2010). Currently scientific programmer at NIH. Advisor: Z. 
Toroczkai. 
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III. Publications 

Below we list the publications and their abstracts in inverse chronological order that resulted 
from activity from this grant. 

 

[1] S. Horvát, É. Czabarka, and Z. Toroczkai, “Reducing Degeneracy in Maximum Entropy Models 
of Networks,” Phys. Rev. Lett., vol. 114, no. 15, p. 158701, 2015. 

Abstract: Based on Jaynes’s maximum entropy principle, exponential random graphs 
provide a family of principled models that allow the prediction of network properties as 
constrained by empirical data (observables). However, their use is often hindered by the 
degeneracy problem characterized by spontaneous symmetry breaking, where 
predictions fail. Here we show that degeneracy appears when the corresponding density 
of states function is not log-concave, which is typically the consequence of nonlinear 
relationships between the constraining observables. Exploiting these nonlinear 
relationships here we propose a solution to the degeneracy problem for a large class of 
systems via transformations that render the density of states function log-concave. The 
effectiveness of the method is demonstrated on examples. 

[2] K. E. Bassler and T. Z. Genio, Charo I Del, Erdős Péter L, Miklós István, “Exact sampling of graphs 
with prescribed degree correlations,” New J. Phys., vol. 17, no. 8, p. 083052, 2015. 

Abstract: Many real-world networks exhibit correlations between the node degrees. For 
instance, in social networks nodes tend to connect to nodes of similar degree and 
conversely, in biological and technological networks, high-degree nodes tend to be linked 
with low-degree nodes. Degree correlations also affect the dynamics of processes 
supported by a network structure, such as the spread of opinions or epidemics. The proper 
modelling of these systems, i.e., without uncontrolled biases, requires the sampling of 
networks with a specified set of constraints. We present a solution to the sampling 
problem when the constraints imposed are the degree correlations. In particular, we 
develop an exact method to construct and sample graphs with a specified joint-degree 
matrix, which is a matrix providing the number of edges between all the sets of nodes of a 
given degree, for all degrees, thus completely specifying all pairwise degree correlations, 
and additionally, the degree sequence itself. Our algorithm always produces independent 
samples without backtracking. The complexity of the graph construction algorithm is 
𝒪 𝑁𝑀   where  𝑁 is the number of nodes and 𝑀 is the number of edges. 

[3] P. Erdös, I. Miklós, and Z. Toroczkai, “A Decomposition Based Proof for Fast Mixing of a Markov 
Chain over Balanced Realizations of a Joint Degree Matrix,” SIAM J. Discret. Math., vol. 29, no. 1, 
pp. 481–499, Jan. 2015. 
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Abstract: A joint degree matrix (JDM) specifies the number of connections between nodes 
of given degrees in a graph, for all degree pairs, and uniquely determines the degree 
sequence of the graph. We consider the space of all balanced realizations of an arbitrary 
JDM, realizations in which the links between any two fixed-degree groups of nodes are 
placed as uniformly as possible. We prove that a swap Markov chain Monte Carlo 
algorithm in the space of all balanced realizations of an arbitrary graphical JDM mixes 
rapidly, i.e., the relaxation time of the chain is bounded from above by a polynomial in the 
number of nodes n. To prove fast mixing, we first prove a general factorization theorem 
similar to the Martin–Randall method for disjoint decompositions (partitions). This 
theorem can be used to bound from below the spectral gap with the help of fast mixing 
subchains within every partition and a bound on an auxiliary Markov chain between the 
partitions. Our proof of the general factorization theorem is direct and uses conductance 
based methods (Cheeger inequality). 

[4] C. Orsini, M. M. Dankulov, P. Colomer-de-Simón, A. Jamakovic, P. Mahadevan, A. Vahdat, K. E. 
Bassler, Z. Toroczkai, M. Boguñá, G. Caldarelli, S. Fortunato, and D. Krioukov, “Quantifying 
randomness in real networks,” Nature Communications, vol. 6, no. May, p. 8627, 2015. 

Abstract: Represented as graphs, real networks are intricate combinations of order and 
disorder. Fixing some of the structural properties of network models to their values 
observed in real networks, many other properties appear as statistical consequences of 
these fixed observables, plus randomness in other respects. Here we employ the dk-series, 
a complete set of basic characteristics of the network structure, to study the statistical 
dependencies between different network properties. We consider six real networks—the 
Internet, US airport network, human protein interactions, techno-social web of trust, 
English word network, and an fMRI map of the human brain—and find that many 
important local and global structural properties of these networks are closely reproduced 
by dk-random graphs whose degree distributions, degree correlations and clustering are 
as in the corresponding real network. We discuss important conceptual, methodological, 
and practical implications of this evaluation of network randomness, and release software 
to generate dk-random graphs. 

[5] C. Poletto, S. Meloni, A. Van Metre, V. Colizza, Y. Moreno, and A. Vespignani, “Characterising 
two-pathogen competition in spatially structured environments,” Sci. Rep., vol. 5, p. 7895, 2015. 

Abstract: Different pathogens spreading in the same host population often generate 
complex co-circulation dynamics because of the many possible interactions between the 
pathogens and the host immune system, the host life cycle, and the space structure of the 
population. Here we focus on the competition between two acute infections and we 
address the role of host mobility and cross-immunity in shaping possible dominance/co-
dominance regimes. Host mobility is modelled as a network of traveling flows connecting 
nodes of a metapopulation, and the two-pathogen dynamics is simulated with a 
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stochastic mechanistic approach. Results depict a complex scenario where, according to 
the relation among the epidemiological parameters of the two pathogens, mobility can 
either be non-influential for the competition dynamics or play a critical role in selecting 
the dominant pathogen. The characterization of the parameter space can be explained in 
terms of the trade-off between pathogen’s spreading velocity and its ability to diffuse in a 
sparse environment. Variations in the cross-immunity level induce a transition between 
presence and absence of competition. The present study disentangles the role of the 
relevant biological and ecological factors in the competition dynamics, and provides 
relevant insights into the spatial ecology of infectious diseases. 

[6] S. Merler, M. Ajelli, L. Fumanelli, M. F. C. Gomes, A. P. Y. Piontti, L. Rossi, D. L. Chao, I. M. J. 
Longini, M. E. Halloran, and A. Vespignani, “Spatiotemporal spread of the 2014 outbreak of Ebola 
virus disease in Liberia and  the effectiveness of non-pharmaceutical interventions: a 
computational modelling analysis.,” Lancet. Infect. Dis., vol. 3099, no. 14, pp. 1–8, 2015. 

Abstract: BACKGROUND: The 2014 epidemic of Ebola virus disease in parts of west Africa 
defines an unprecedented health threat. We developed a model of Ebola virus 
transmission that integrates detailed geographical and demographic data from Liberia to 
overcome the limitations of non-spatial approaches in projecting the disease dynamics 
and assessing non-pharmaceutical control interventions. METHODS: We modelled the 
movements of individuals, including patients not infected with Ebola virus, seeking 
assistance in health-care facilities, the movements of individuals taking care of patients 
infected with Ebola virus not admitted to hospital, and the attendance of funerals. 
Individuals were grouped into randomly assigned households (size based on 
Demographic Health Survey data) that were geographically placed to match population 
density estimates on a grid of 3157 cells covering the country. The spatial agent-based 
model was calibrated with a Markov chain Monte Carlo approach. The model was used to 
estimate Ebola virus transmission parameters and investigate the effectiveness of 
interventions such as availability of Ebola treatment units, safe burials procedures, and 
household protection kits. FINDINGS: Up to Aug 16, 2014, we estimated that 38.3% of 
infections (95% CI 17.4-76.4) were acquired in hospitals, 30.7% (14.1-46.4) in households, 
and 8.6% (3.2-11.8) while participating in funerals. We noted that the movement and 
mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola 
virus and those not infected was a sufficient driver of the reported pattern of spatial 
spread. The subsequent decrease of incidence at country and county level is attributable 
to the increasing availability of Ebola treatment units (which in turn contributed to 
drastically decreased hospital transmission), safe burials, and distribution of household 
protection kits. INTERPRETATION: The model allows assessment of intervention options 
and the understanding of their role in the decrease in incidence reported since Sept 7, 
2014. High-quality data (eg, to estimate household secondary attack rate, contact patterns 
within hospitals, and effects of ongoing interventions) are needed to reduce uncertainty 
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in model estimates. FUNDING: US Defense Threat Reduction Agency, US National 
Institutes of Health. 

[7] Y. Ren, M. Ercsey-Ravasz, P. Wang, M. C. González, and Z. Toroczkai, “Predicting commuter 
flows in spatial networks using a radiation model based on temporal ranges.” Nature 
Communications, vol. 5, p. 5347, 2014. 

Abstract: Understanding network flows such as commuter traffic in large transportation 
networks is an ongoing challenge due to the complex nature of the transportation 
infrastructure and human mobility. Here we show a first-principles based method for 
traffic prediction using a cost-based generalization of the radiation model for human 
mobility, coupled with a cost-minimizing algorithm for efficient distribution of the 
mobility fluxes through the network. Using US census and highway traffic data, we show 
that traffic can efficiently and accurately be computed from a range-limited, network 
betweenness type calculation. The model based on travel time costs captures the log-
normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) 
when compared with real traffic. Because of its principled nature, this method can inform 
many applications related to human mobility driven flows in spatial networks, ranging 
from transportation, through urban planning to mitigation of the effects of catastrophic 
events. 

[8] F. Ciulla, N. Perra, A. Baronchelli, and A. Vespignani, “Damage detection via shortest-path 
network sampling,” Phys. Rev. E, vol. 89, no. 5, p. 052816, 2014. 

Abstract: Large networked systems are constantly exposed to local damages and failures 
that can alter their functionality. The knowledge of the structure of these systems is, 
however, often derived through sampling strategies whose effectiveness at damage 
detection has not been thoroughly investigated so far. Here, we study the performance of 
shortest-path sampling for damage detection in large-scale networks. We define 
appropriate metrics to characterize the sampling process before and after the damage, 
providing statistical estimates for the status of nodes (damaged, not damaged). The 
proposed methodology is flexible and allows tuning the trade-off between the accuracy 
of the damage detection and the number of probes used to sample the network. We test 
and measure the efficiency of our approach considering both synthetic and real networks 
data. Remarkably, in all of the systems studied, the number of correctly identified 
damaged nodes exceeds the number of false positives, allowing us to uncover the 
damage precisely. 

[9] M. F. C. Gomes, A. Pastore y Piotti, L. Rossi, D. Chao, I. Longini, and M. E. Halloran, “Assessing 
the International Spreading Risk Associated with the 2014 West African Ebola Outbreak,” PLOS 
Curr. Outbreaks, pp. 1–22, 2014. 

Abstract: Background: The 2014 West African Ebola Outbreak is so far the largest and 
deadliest recorded in history. The affected countries, Sierra Leone, Guinea, Liberia, and 



HDTRA1-09-1-0039 Final Report 
 

Publications |  21 

Nigeria, have been struggling to contain and to mitigate the outbreak. The ongoing rise in 
confirmed and suspected cases, 2615 as of 20 August 2014, is considered to increase the 
risk of international dissemination, especially because the epidemic is now affecting cities 
with major commercial airports. Method: We use the Global Epidemic and Mobility Model 
to generate stochastic, individual based simulations of epidemic spread worldwide, 
yielding, among other measures, the incidence and seeding events at a daily resolution 
for 3,362 subpopulations in 220 countries. The mobility model integrates daily airline 
passenger traffic worldwide and the disease model includes the community, hospital, and 
burial transmission dynamic. We use a multimodel inference approach calibrated on data 
from 6 July to the date of 9 August 2014. The estimates obtained were used to generate a 
3-month ensemble forecast that provides quantitative estimates of the local transmission 
of Ebola virus disease in West Africa and the probability of international spread if the 
containment measures are not successful at curtailing the outbreak. Results: We model 
the short-term growth rate of the disease in the affected West African countries and 
estimate the basic reproductive number to be in the range 1.5 − 2.0 (interval at the 1/10 
relative likelihood). We simulated the international spreading of the outbreak and provide 
the estimate for the probability of Ebola virus disease case importation in countries across 
the world. Results indicate that the short-term (3 and 6 weeks) probability of international 
spread outside the African region is small, but not negligible. The extension of the 
outbreak is more likely occurring in African countries, increasing the risk of international 
dissemination on a longer time scale. 

[10] N. T. Markov, M. M. Ercsey-Ravasz, A. R. Ribeiro Gomes, C. Lamy, L. Magrou, J. Vezoli, P. Misery, 
A. Falchier, R. Quilodran, M. A. Gariel, J. Sallet, R. Gamanut, C. Huissoud, S. Clavagnier, P. Giroud, D. 
Sappey-Marinier, P. Barone, C. Dehay, Z. Toroczkai, K. Knoblauch, D. C. Van Essen, and H. Kennedy, 
“A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex,” Cereb. 
Cortex, vol. 24, no. 1, pp. 17–36, 2014. 

Abstract: Retrograde tracer injections in 29 of the 91 areas of the macaque cerebral cortex 
revealed 1,615 interareal pathways, a third of which have not previously been reported. A 
weight index (extrinsic fraction of labeled neurons [FLNe]) was determined for each area-
to-area pathway. Newly found projections were weaker on average compared with the 
known projections; nevertheless, the 2 sets of pathways had extensively overlapping 
weight distributions. Repeat injections across individuals revealed modest FLNe variability 
given the range of FLNe values (standard deviation <1 log unit, range 5 log units). The 
connectivity profile for each area conformed to a lognormal distribution, where a majority 
of projections are moderate or weak in strength. In the 𝐺!"×!" interareal subgraph, two-
thirds of the connections that can exist do exist. Analysis of the smallest set of areas that 
collects links from all 91 nodes of the 𝐺!"×!" subgraph (dominating set analysis) confirms 
the dense (66%) structure of the cortical matrix. The 𝐺!"×!" subgraph suggests an 
unexpectedly high incidence of unidirectional links. The directed and weighted 𝐺!"×!" 
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connectivity matrix for the macaque will be valuable for comparison with connectivity 
analyses in other species, including humans. It will also inform future modeling studies 
that explore the regularities of cortical networks. 

[11] A. Pastore Y Piontti, M. F. D. C. Gomes, N. Samay, N. Perra, and A. Vespignani, “The infection 
tree of global epidemics,” Netw. Sci., vol. 2, no. 01, pp. 132–137, 2014. 

[12] C. Poletto, M. Gomes, A. Pastore y Piontti, L. Rossi, L. Bioglio, D. Chao, I. Longini, M. Halloran, 
V. Colizza, and A. Vespignani, “Assessing the impact of travel restrictions on international spread 
of the 2014 West African Ebola epidemic,” Eurosurveillance, vol. 19, no. 42, p. 20936, 2014. 

Abstract: The quick spread of an Ebola outbreak in West Africa has led a number of 
countries and airline companies to issue travel bans to the affected areas. Considering 
data up to 31 Aug 2014, we assess the impact of the resulting traffic reductions with 
detailed numerical simulations of the international spread of the epidemic. Traffic 
reductions are shown to delay by only a few weeks the risk that the outbreak extends to 
new countries. 

[13] C. Poletto, S. Meloni, V. Colizza, Y. Moreno, and A. Vespignani, “Host Mobility Drives Pathogen 
Competition in Spatially Structured Populations,” PLoS Comput Biol, vol. 9, no. 8, p. e1003169, 
2013. 

Abstract: Author SummaryWhen multiple infectious agents circulate in a given population 
of hosts, they interact for the exploitation of susceptible hosts aimed at pathogen survival 
and maintenance. Such interaction is ruled by the combination of different mechanisms 
related to the biology of host-pathogen interaction, environmental conditions and host 
demography and behavior. We focus on pathogen competition and we investigate 
whether the mobility of hosts in a spatially structured environment can act as a selective 
driver for pathogen circulation. We use mathematical and computational models for 
disease transmission between hosts and for the mobility of hosts to study the competition 
between two pathogens providing each other full cross-immunity after infection. 
Depending on the rate of migration of hosts, competition results in the dominance of 
either one of the pathogens at the spatial level – though the two infectious agents are 
characterized by the same invasion potential at the single population scale – or 
cocirculation of both. These results highlight the importance of explicitly accounting for 
the spatial scale and for the different time scales involved (i.e. host mobility and spreading 
dynamics of the two pathogens) in the study of host-multipathogen systems. 

[14]  M. Ercsey-Ravasz, N. T. Markov, C. Lamy, D. C. Van Essen, K. Knoblauch, Z. Toroczkai, and H. 
Kennedy, “A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance 
Rule,” Neuron, vol. 80, no. 1, pp. 184–197, 2013. 

Abstract: Recent advances in neuroscience have engendered interest in large-scale brain 
networks. Using a consistent database of cortico-cortical connectivity, generated from 
hemisphere-wide, retrograde tracing experiments in the macaque, we analyzed interareal 
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weights and distances to reveal an important organizational principle of brain 
connectivity. Using appropriate graph theoretical measures, we show that although very 
dense (66%), the interareal network has strong structural specificity. Connection weights 
exhibit a heavy-tailed lognormal distribution spanning five orders of magnitude and 
conform to a distance rule reflecting exponential decay with interareal separation. A 
single-parameter random graph model based on this rule predicts numerous features of 
the cortical network: (1) the existence of a network core and the distribution of cliques, (2) 
global and local binary properties, (3) global and local weight-based communication 
efficiencies modeled as network conductance, and (4) overall wire-length minimization. 
These findings underscore the importanceof distance and weight-based heterogeneity in 
cortical architecture and processing. 

[15] B. Gonçalves, D. Balcan, and A. Vespignani, “Human mobility and the worldwide impact of 
intentional localized highly pathogenic virus release.,” Sci. Rep., vol. 3, p. 810, 2013. 

Abstract: The threat of bioterrorism and the possibility of accidental release have spawned 
a growth of interest in modeling the course of the release of a highly pathogenic agent. 
Studies focused on strategies to contain local outbreaks after their detection show that 
timely interventions with vaccination and contact tracing are able to halt transmission. 
However, such studies do not consider the effects of human mobility patterns. Using a 
large-scale structured metapopulation model to simulate the global spread of smallpox 
after an intentional release event, we show that index cases and potential outbreaks can 
occur in different continents even before the detection of the pathogen release. These 
results have two major implications: i) intentional release of a highly pathogenic agent 
within a country will have global effects; ii) the release event may trigger outbreaks in 
countries lacking the health infrastructure necessary for effective containment. The 
presented study provides data with potential uses in defining contingency plans at the 
National and International level. 

[16] N. T. Markov, M. Ercsey-Ravasz, C. Lamy, A. R. Ribeiro Gomes, L. Magrou, P. Misery, P. Giroud, 
P. Barone, C. Dehay, Z. Toroczkai, K. Knoblauch, D. C. Van Essen, and H. Kennedy, “The role of 
long-range connections on the specificity of the macaque interareal cortical network.,” Proc. Natl. 
Acad. Sci. U. S. A., vol. 110, no. 13, pp. 5187–92, 2013. 

Abstract: We investigated the influence of interareal distance on connectivity patterns in a 
database obtained from the injection of retrograde tracers in 29 areas distributed over six 
regions (occipital, temporal, parietal, frontal, prefrontal, and limbic). One-third of the 1,615 
pathways projecting to the 29 target areas were reported only recently and deemed new-
found projections (NFPs). NFPs are predominantly long-range, low-weight connections. A 
minimum dominating set analysis (a graph theoretic measure) shows that NFPs play a 
major role in globalizing input to small groups of areas. Randomization tests show that (i) 
NFPs make important contributions to the specificity of the connectivity profile of 
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individual cortical areas, and (ii) NFPs share key properties with known connections at the 
same distance. We developed a similarity index, which shows that intraregion similarity is 
high, whereas the interregion similarity declines with distance. For area pairs, there is a 
steep decline with distance in the similarity and probability of being connected. 
Nevertheless, the present findings reveal an unexpected binary specificity despite the 
high density (66%) of the cortical graph. This specificity is made possible because 
connections are largely concentrated over short distances. These findings emphasize the 
importance of long-distance connections in the connectivity profile of an area. We 
demonstrate that long-distance connections are particularly prevalent for prefrontal 
areas, where they may play a prominent role in large scale communication and 
information integration. 

[17] S. Merler, M. Ajelli, L. Fumanelli, and A. Vespignani, “Containing the accidental laboratory 
escape of potential pandemic influenza viruses.,” BMC Med., vol. 11, p. 252, 2013. 

Abstract: BACKGROUND: The recent work on the modified H5N1 has stirred an intense 
debate on the risk associated with the accidental release from biosafety laboratory of 
potential pandemic pathogens. Here, we assess the risk that the accidental escape of a 
novel transmissible influenza strain would not be contained in the local community. 
METHODS: We develop here a detailed agent-based model that specifically considers 
laboratory workers and their contacts in microsimulations of the epidemic onset. We 
consider the following non-pharmaceutical interventions: isolation of the laboratory, 
laboratory workers' household quarantine, contact tracing of cases and subsequent 
household quarantine of identified secondary cases, and school and workplace closure 
both preventive and reactive. RESULTS: Model simulations suggest that there is a non-
negligible probability (5% to 15%), strongly dependent on reproduction number and 
probability of developing clinical symptoms, that the escape event is not detected at all. 
We find that the containment depends on the timely implementation of non-
pharmaceutical interventions and contact tracing and it may be effective (>90% 
probability per event) only for pathogens with moderate transmissibility (reproductive 
number no larger than R₀ = 1.5). Containment depends on population density and 
structure as well, with a probability of giving rise to a global event that is three to five 
times lower in rural areas. CONCLUSIONS: Results suggest that controllability of escape 
events is not guaranteed and, given the rapid increase of biosafety laboratories 
worldwide, this poses a serious threat to human health. Our findings may be relevant to 
policy makers when designing adequate preparedness plans and may have important 
implications for determining the location of new biosafety laboratories worldwide. 

[18] H. Kennedy, K. Knoblauch, and Z. Toroczkai, “Why data coherence and quality is critical for 
understanding interareal cortical networks,” Neuroimage, vol. 80, pp. 37–45, 2013. 

Abstract: Numerous studies have investigated inter-areal cortical networks using either 
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diffusion MRI or axonal tract-tracing. While both techniques have been used in non-
human primates only diffusion MRI can be used in human. The advantage of axonal tract-
tracing is that unlike diffusion MRI it has a high single-cell resolution, and most 
importantly gives the laminar origins and terminations of inter-areal pathways. It, 
therefore, can be used to obtain the weighted and directed cortical graph. Axonal tract 
tracing has traditionally been collated from multiple experiments in order to determine 
the large-scale inter-areal network. Collated data of this kind present numerous problems 
due to lack of coherence across studies and incomplete exploitation. We have therefore 
developed a consistent data base which uses standardized experimental and parcellation 
procedures across brains. Here we review our recent publications analyzing the consistent 
database obtained from retrograde tracer injections in 29 cortical areas in a parcellation of 
91 areas of the macaque cortex. Compared to collated data, our results show that the 
cortical graph is dense. Density is a graph theoretic measure, and refers to the number of 
observed connections in a square matrix expressed as a percentage of the possible 
connections. In our database 66% of the connections that can exist do exist which is 
considerably higher than the graph densities reported in studies using collated data (7–
32%). The consistent data base reports 37% more pathways than previously reported, 
many of which are unidirectional. This latter and unexpected property has not been 
reported in earlier studies. Given the high density, the resulting cortical graph shows 
other unexpected properties. Firstly, the binary specificity is considerably higher than 
expected. As we show, this property is a consequence of the inter-areal connection 
probability declining with distance. Secondly, small groups of areas are found to receive 
high numbers of inputs. This is termed a high domination and is analyzed by a graph 
theoretic procedure known as a minimum dominating set analysis. We discuss these 
findings with respect to the long-distance connections, over half of which were previously 
not reported. These so called new found projections display high specificities and play an 
important integration role across large regions. It is to be expected that the future 
examination of the 62 remaining areas will disclose further levels of complexity and 
enable construction of a weighted directed graph revealing the hierarchical complexity of 
the cortex. 

[19] C. Wang, O. Lizardo, D. Hachen, A. Strathman, Z. Toroczkai, and N. V. Chawla, “A dyadic 
reciprocity index for repeated interaction networks,” Netw. Sci., vol. 1, no. 01, pp. 31–48, 2013.  

Abstract: A wide variety of networked systems in human societies are composed of 
repeated communications between actors. A dyadic relationship made up of repeated 
interactions may be reciprocal (both actors have the same probability of directing a 
communication attempt to the other) or non-reciprocal (one actor has a higher 
probability of initiating a communication attempt than the other). In this paper we 
propose a theoretically motivated index of reciprocity appropriate for networks formed 
from repeated interactions based on these probabilities. We go on to examine the 
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distribution of reciprocity in a large-scale social network built from trace-logs of over a 
billion cell-phone communication events across millions of actors in a large industrialized 
country. We find that while most relationships tend toward reciprocity, a substantial 
minority of relationships exhibit large levels of non-reciprocity. This is puzzling because 
behavioral theories in social science predict that persons will selectively terminate non-
reciprocal relationships, keeping only those that approach reciprocity. We point to two 
structural features of human communication behavior and relationship formation—the 
division of contacts into strong and weak ties and degree-based assortativity—that either 
help or hinder the ability of persons to obtain communicative balance in their 
relationships. We examine the extent to which deviations from reciprocity in the observed 
network are partially traceable to the operation of these countervailing tendencies. 

[20] M. Ercsey-Ravasz, R. N. Lichtenwalter, N. V. Chawla, and Z. Toroczkai, “Range-limited 
centrality measures in complex networks,” Phys. Rev. E, vol. 85, no. 6, p. 066103, 2012. 

Abstract: Here we present a range-limited approach to centrality measures in both non-
weighted and weighted directed complex networks. We introduce an efficient method 
that generates for every node and every edge its betweenness centrality based on 
shortest paths of lengths not longer than 𝑙 = 1,⋯ , 𝐿 in the case of non-weighted 
networks, and for weighted networks the corresponding quantities based on minimum 
weight paths with path weights not larger than 𝑤! = 𝑙Δ, 𝑙 = 1,⋯ , 𝐿 = 𝑅/∆. These 
measures provide a systematic description on the positioning importance of a node 
(edge) with respect to its network neighborhoods one step out, two steps out, etc., up to 
and including the whole network. They are more informative than traditional centrality 
measures, as network transport typically happens on all length scales, from transport to 
nearest neighbors to the farthest reaches of the network. We show that range-limited 
centralities obey universal scaling laws for large non-weighted networks. As the 
computation of traditional centrality measures is costly, this scaling behavior can be 
exploited to efficiently estimate centralities of nodes and edges for all ranges, including 
the traditional ones. The scaling behavior can also be exploited to show that the ranking 
top list of nodes (edges) based on their range-limited centralities quickly freezes as a 
function of the range, and hence the diameter-range top list can be efficiently predicted. 
We also show how to estimate the typical largest node-to-node distance for a network of 
𝑁 nodes, exploiting the afore-mentioned scaling behavior. These observations were made 
on model networks and on a large social network inferred from cell-phone trace logs 
(~5.5×10! nodes and ~2.7×10! edges). Finally, we apply these concepts to efficiently 
detect the vulnerability backbone of a network (defined as the smallest percolating 
cluster of the highest betweenness nodes and edges) and illustrate the importance of 
weight-based centrality measures in weighted networks in detecting such backbones. 

[21] D. Balcan and A. Vespignani, “Invasion threshold in structured populations with recurrent 
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mobility patterns,” J. Theor. Biol., vol. 293, pp. 87–100, 2012. 
Abstract: In this paper we develop a framework to analyze the behavior of contagion and 
spreading processes in complex subpopulation networks where individuals have memory 
of their subpopulation of origin. We introduce a metapopulation model in which 
subpopulations are connected through heterogeneous fluxes of individuals. The mobility 
process among communities takes into account the memory of residence of individuals 
and is incorporated with the classical susceptible-infectious-recovered epidemic model 
within each subpopulation. In order to gain analytical insight into the behavior of the 
system we use degree-block variables describing the heterogeneity of the subpopulation 
network and a time-scale separation technique for the dynamics of individuals. By 
considering the stochastic nature of the epidemic process we obtain the explicit 
expression of the global epidemic invasion threshold, below which the disease dies out 
before reaching a macroscopic fraction of the subpopulations. This threshold is not 
present in continuous deterministic diffusion models and explicitly depends on the 
disease parameters, the mobility rates, and the properties of the coupling matrices 
describing the mobility across subpopulations. The results presented here take a step 
further in offering insight into the fundamental mechanisms controlling the spreading of 
infectious diseases and other contagion processes across spatially structured 
communities. 

[22] M. Tizzoni, P. Bajardi, C. Poletto, J. J. Ramasco, D. Balcan, B. Gonçalves, N. Perra, V. Colizza, and 
A. Vespignani, “Real-time numerical forecast of global epidemic spreading: case study of 2009 
A/H1N1pdm,” BMC Med., vol. 10, no. 1, p. 165, 2012. 

Abstract: Background: Mathematical and computational models for infectious diseases 
are increasingly used to support public-health decisions; however, their reliability is 
currently under debate. Real-time forecasts of epidemic spread using data-driven models 
have been hindered by the technical challenges posed by parameter estimation and 
validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented 
opportunity to validate real-time model predictions and define the main success criteria 
for different approaches.  Methods: We used the Global Epidemic and Mobility Model to 
generate stochastic simulations of epidemic spread worldwide, yielding (among other 
measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations 
in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided 
an estimate of the seasonal transmission potential during the early phase of the H1N1 
pandemic and generated ensemble forecasts for the activity peaks in the northern 
hemisphere in the fall/winter wave. These results were validated against the real-life 
surveillance data collected in 48 countries, and their robustness assessed by focusing on 
1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the 
model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we 
studied the effect of data incompleteness on the prediction reliability. Results: Real-time 
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predictions of the peak timing are found to be in good agreement with the empirical data, 
showing strong robustness to data that may not be accessible in real time (such as pre-
exposure immunity and adherence to vaccination campaigns), but that affect the 
predictions for the attack rates. The timing and spatial unfolding of the pandemic are 
critically sensitive to the level of mobility data integrated into the model. Conclusions: Our 
results show that large-scale models can be used to provide valuable real-time forecasts 
of influenza spreading, but they require high-performance computing. The quality of the 
forecast depends on the level of data integration, thus stressing the need for high-quality 
data in population-based models, and of progressive updates of validated available 
empirical knowledge to inform these models. 

[23] H. Kim, C. I. Del Genio, K. E. Bassler, and Z. Toroczkai, “Constructing and sampling directed 
graphs with given degree sequences,” New J. Phys., vol. 14, no. 2, p. 023012, 2012. 

Abstract: The interactions between the components of complex networks are often 
directed. Proper modeling of such systems frequently requires the construction of 
ensembles of digraphs with a given sequence of in- and out-degrees. As the number of 
simple labeled graphs with a given degree sequence is typically very large even for short 
sequences, sampling methods are needed for statistical studies. Currently, there are two 
main classes of methods that generate samples. One of the existing methods first 
generates a restricted class of graphs and then uses a Markov chain Monte-Carlo 
algorithm based on edge swaps to generate other realizations. As the mixing time of this 
process is still unknown, the independence of the samples is not well controlled. The 
other class of methods is based on the configuration model that may lead to 
unacceptably many sample rejections due to self-loops and multiple edges. Here we 
present an algorithm that can directly construct all possible realizations of a given bi-
degree sequence by simple digraphs. Our method is rejection-free, guarantees the 
independence of the constructed samples and provides their weight. The weights can 
then be used to compute statistical averages of network observables as if they were 
obtained from uniformly distributed sampling or from any other chosen distribution. 

[24] M. Ercsey-Ravasz, Z. Toroczkai, Z. Lakner, and J. Baranyi, “Complexity of the international 
agro-food trade network and its impact on food safety.,” PLoS One, vol. 7, no. 5, p. e37810, 2012. 

Abstract: With the world’s population now in excess of 7 billion, it is vital to ensure the 
chemical and microbiological safety of our food, while maintaining the sustainability of its 
production, distribution and trade. Using UN databases, here we show that the 
international agro-food trade network (IFTN), with nodes and edges representing 
countries and import export fluxes, respectively, has evolved into a highly heterogeneous, 
complex supply-chain network. Seven countries form the core of the IFTN, with high 
values of betweenness centrality and each trading with over 77% of all the countries in 
the world. Graph theoretical analysis and a dynamic food flux model show that the IFTN 
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provides a vehicle suitable for the fast distribution of potential contaminants but 
unsuitable for tracing their origin. In particular, we show that high values of node 
betweenness and vulnerability correlate well with recorded large food poisoning 
outbreaks. 

[25] N. Perra, D. Balcan, B. Gonçalves, and A. Vespignani, “Towards a characterization of behavior-
disease models.,” PLoS One, vol. 6, no. 8, p. e23084, 2011. 

Abstract: The last decade saw the advent of increasingly realistic epidemic models that 
leverage on the availability of highly detailed census and human mobility data. Data-
driven models aim at a granularity down to the level of households or single individuals. 
However, relatively little systematic work has been done to provide coupled behavior-
disease models able to close the feedback loop between behavioral changes triggered in 
the population by an individual's perception of the disease spread and the actual disease 
spread itself. While models lacking this coupling can be extremely successful in mild 
epidemics, they obviously will be of limited use in situations where social disruption or 
behavioral alterations are induced in the population by knowledge of the disease. Here 
we propose a characterization of a set of prototypical mechanisms for self-initiated social 
distancing induced by local and non-local prevalence-based information available to 
individuals in the population. We characterize the effects of these mechanisms in the 
framework of a compartmental scheme that enlarges the basic SIR model by considering 
separate behavioral classes within the population. The transition of individuals in/out of 
behavioral classes is coupled with the spreading of the disease and provides a rich phase 
space with multiple epidemic peaks and tipping points. The class of models presented 
here can be used in the case of data-driven computational approaches to analyze 
scenarios of social adaptation and behavioral change. 

[26] N. T. Markov, P. Misery,  a. Falchier, C. Lamy, J. Vezoli, R. Quilodran, M. a. Gariel, P. Giroud, M. 
Ercsey-Ravasz, L. J. Pilaz, C. Huissoud, P. Barone, C. Dehay, Z. Toroczkai, D. C. Van Essen, H. 
Kennedy, and K. Knoblauch, “Weight consistency specifies regularities of macaque cortical 
networks,” Cereb. Cortex, vol. 21, no. 6, pp. 1254–1272, 2011. 

Abstract: To what extent cortical pathways show significant weight differences and 
whether these differences are consistent across animals (thereby comprising robust 
connectivity profiles) is an important and unresolved neuroanatomical issue. Here we 
report a quantitative retrograde tracer analysis in the cynomolgus macaque monkey of 
the weight consistency of the afferents of cortical areas across brains via calculation of a 
weight index (fraction of labeled neurons, FLN). Injection in 8 cortical areas (3 occipital 
plus 5 in the other lobes) revealed a consistent pattern: small subcortical input (1.3% 
cumulative FLN), high local intrinsic connectivity (80% FLN), high-input form neighboring 
areas (15% cumulative FLN), and weak long-range corticocortical connectivity (3% 
cumulative FLN). Corticocortical FLN values of projections to areas V1, V2, and V4 showed 
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heavy-tailed, lognormal distributions spanning 5 orders of magnitude that were 
consistent, demonstrating significant connectivity profiles. These results indicate that 1) 
connection weight heterogeneity plays an important role in determining cortical network 
specificity, 2) high investment in local projections highlights the importance of local 
processing, and 3) transmission of information across multiple hierarchy levels mainly 
involves pathways having low FLN values.  

[27] W. Van den Broeck, C. Gioannini, B. Gonçalves, M. Quaggiotto, V. Colizza, and A. Vespignani, 
“The GLEaMviz computational tool, a publicly available software to explore realistic epidemic 
spreading scenarios at the global scale.,” BMC Infect. Dis., vol. 11, no. 1, p. 37, 2011. 

Abstract: Computational models play an increasingly important role in the assessment 
and control of public health crises, as demonstrated during the 2009 H1N1 influenza 
pandemic. Much research has been done in recent years in the development of 
sophisticated data-driven models for realistic computer-based simulations of infectious 
disease spreading. However, only a few computational tools are presently available for 
assessing scenarios, predicting epidemic evolutions, and managing health emergencies 
that can benefit a broad audience of users including policy makers and health institutions. 

[28] D. Balcan and A. Vespignani, “Phase transitions in contagion processes mediated by 
recurrent mobility patterns,” Nat. Phys., vol. 7, no. 7, pp. 581–586, 2011. 

Abstract: Human mobility and activity patterns mediate contagion on many levels, 
including the spatial spread of infectious diseases, diffusion of rumors, and emergence of 
consensus. These patterns however are often dominated by specific locations and 
recurrent flows and poorly modelled by the random diffusive dynamics generally used to 
study them. Here we develop a theoretical framework to analyse contagion within a 
network of locations where individuals recall their geographic origins. We find a phase 
transition between a regime in which the contagion affects a large fraction of the system 
and one in which only a small fraction is affected. This transition cannot be uncovered by 
continuous deterministic models because of the stochastic features of the contagion 
process and defines an invasion threshold that depends on mobility parameters, 
providing guidance for controlling contagion spread by constraining mobility processes. 
We recover the threshold behaviour by analysing diffusion processes mediated by real 
human commuting data. 

[29] P. Bajardi, C. Poletto, J. J. Ramasco, M. Tizzoni, V. Colizza, and A. Vespignani, “Human mobility 
networks, travel restrictions, and the global spread of 2009 H1N1 pandemic.,” PLoS One, vol. 6, no. 
1, p. e16591, 2011.  

Abstract: After the emergence of the H1N1 influenza in 2009, some countries responded 
with travel-related controls during the early stage of the outbreak in an attempt to 
contain or slow down its international spread. These controls along with self-imposed 
travel limitations contributed to a decline of about 40% in international air traffic to/from 
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Mexico following the international alert. However, no containment was achieved by such 
restrictions and the virus was able to reach pandemic proportions in a short time. When 
gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on 
epidemic models that integrate the wide range of features characterizing human mobility 
and the many options available to public health organizations for responding to a 
pandemic. Here we present a comprehensive computational and theoretical study of the 
role of travel restrictions in halting and delaying pandemics by using a model that 
explicitly integrates air travel and short-range mobility data with high-resolution 
demographic data across the world and that is validated by the accumulation of data 
from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1 
pandemic by assessing the potential impact of mobility restrictions that vary with respect 
to their magnitude and their position in the pandemic timeline. We provide a quantitative 
discussion of the delay obtained by different mobility restrictions and the likelihood of 
containing outbreaks of infectious diseases at their source, confirming the limited value 
and feasibility of international travel restrictions. These results are rationalized in the 
theoretical framework characterizing the invasion dynamics of the epidemics at the 
metapopulation level. 

[30] A. Vespignani, “Modelling dynamical processes in complex socio-technical systems,” Nat. 
Phys., vol. 8, no. 1, pp. 32–39, 2011. 

Abstract: In recent years the increasing availability of computer power and informatics 
tools has enabled the gathering of reliable data quantifying the complexity of socio-
technical systems. Data-driven computational models have emerged as appropriate tools 
to tackle the study of dynamical phenomena as diverse as epidemic outbreaks, 
information spreading and Internet packet routing. These models aim at providing a 
rationale for understanding the emerging tipping points and nonlinear properties that 
often underpin the most interesting characteristics of socio-technical systems. Here, using 
diffusion and contagion phenomena as prototypical examples, we review some of the 
recent progress in modelling dynamical processes that integrates the complex features 
and heterogeneities of real-world systems. 

[31] S. Meloni, N. Perra, A. Arenas, S. Gómez, Y. Moreno, and A. Vespignani, “Modeling human 
mobility responses to the large-scale spreading of infectious diseases,” Sci. Rep., vol. 1, pp. 1–7, 
2011.  

Abstract: Current modeling of infectious diseases allows for the study of realistic scenarios 
that include population heterogeneity, social structures, and mobility processes down to 
the individual level. The advances in the realism of epidemic description call for the 
explicit modeling of individual behavioral responses to the presence of disease within 
modeling frameworks. Here we formulate and analyze a metapopulation model that 
incorporates several scenarios of self-initiated behavioral changes into the mobility 
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patterns of individuals. We find that prevalence-based travel limitations do not alter the 
epidemic invasion threshold. Strikingly, we observe in both synthetic and data-driven 
numerical simulations that when travelers decide to avoid locations with high levels of 
prevalence, this self-initiated behavioral change may enhance disease spreading. Our 
results point out that the real-time availability of information on the disease and the 
ensuing behavioral changes in the population may produce a negative impact on disease 
containment and mitigation. 

[32] M. Ercsey-Ravasz and Z. Toroczkai, “Centrality scaling in large networks,” Phys. Rev. Lett., vol. 
105, no. 3, pp. 2–5, 2010. 

Abstract: Betweenness centrality lies at the core of both transport and structural 
vulnerability properties of complex networks; however, it is computationally costly, and 
its measurement for networks with millions of nodes is nearly impossible. By introducing a 
multiscale decomposition of shortest paths, we show that the contributions to 
betweenness coming from geodesics not longer than 𝐿 obey a characteristic scaling 
versus 𝐿, which can be used to predict the distribution of the full centralities. The method 
is also illustrated on a real-world social network of 5.5×10! nodes and 2.7×10!  links.  

[33] M. Ajelli, B. Gonçalves, D. Balcan, V. Colizza, H. Hu, J. J. Ramasco, S. Merler, and A. Vespignani, 
“Comparing large-scale computational approaches to epidemic modeling: agent-based versus 
structured metapopulation models.,” BMC Infect. Dis., vol. 10, p. 190, 2010. 

Abstract: Background: In recent years large-scale computational models for the realistic 
simulation of epidemic outbreaks have been used with increased frequency. 
Methodologies adapt to the scale of interest and range from very detailed agent-based 
models to spatially-structured metapopulation models. One major issue thus concerns to 
what extent the geo-temporal spreading pattern found by different modeling approaches 
may differ and depend on the different approximations and assumptions used. Methods: 
We provide for the first time a side-by-side comparison of the results obtained with a 
stochastic agent-based model and a structured metapopulation stochastic model for the 
progression of a baseline pandemic event in Italy, a large and geographically 
heterogeneous European country. The agent-based model is based on the explicit 
representation of the Italian population through highly detailed data on the socio-
demographic structure. The metapopulation simulations use the GLobal Epidemic and 
Mobility (GLEaM) model, based on high-resolution census data worldwide, and 
integrating airline travel flow data with short-range human mobility patterns at the global 
scale. The model also considers age structure data for Italy. GLEaM and the agent-based 
models are synchronized in their initial conditions by using the same disease 
parameterization, and by defining the same importation of infected cases from 
international travels. Results: The results obtained show that both models provide 
epidemic patterns that are in very good agreement at the granularity levels accessible by 
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both approaches, with differences in peak timing on the order of a few days. The relative 
difference of the epidemic size depends on the basic reproductive ratio, R0, and on the 
fact that the metapopulation model consistently yields a larger incidence than the agent-
based model, as expected due to the differences in the structure in the intra-population 
contact pattern of the approaches. The age breakdown analysis shows that similar attack 
rates are obtained for the younger age classes. Conclusions: The good agreement 
between the two modeling approaches is very important for defining the tradeoff 
between data availability and the information provided by the models. The results we 
present define the possibility of hybrid models combining the agent-based and the 
metapopulation approaches according to the available data and computational 
resources. 

[34] C. I. Del Genio, H. Kim, Z. Toroczkai, and K. E. Bassler, “Efficient and exact sampling of simple 
graphs with given arbitrary degree sequence,” PLoS One, vol. 5, no. 4, pp. 1–8, 2010. 

Abstract: Uniform sampling from graphical realizations of a given degree sequence is a 
fundamental component in simulation-based measurements of network observables, 
with applications ranging from epidemics, through social networks to Internet modeling. 
Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo 
algorithms) or stub-matching based (the Configuration Model). Both types are ill-
controlled, with typically unknown mixing times for link-swap methods and uncontrolled 
rejections for the Configuration Model. Here we propose an efficient, polynomial time 
algorithm that generates statistically independent graph samples with a given, arbitrary, 
degree sequence. The algorithm provides a weight associated with each sample, allowing 
the observable to be measured either uniformly over the graph ensemble, or, 
alternatively, with a desired distribution. Unlike other algorithms, this method always 
produces a sample, without backtracking or rejections. Using a central limit theorem-
based reasoning, we argue, that for large N, and for degree sequences admitting many 
realizations, the sample weights are expected to have a lognormal distribution. As 
examples, we apply our algorithm to generate networks with degree sequences drawn 
from power-law distributions and from binomial distributions. 

[35] D. Balcan, B. Gonçalves, H. Hu, J. J. Ramasco, V. Colizza, and A. Vespignani, “Modeling the 
spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model,” J. 
Comput. Sci., vol. 1, no. 3, pp. 132–145, 2010.  

Abstract: Here we present the Global Epidemic and Mobility (GLEaM) model that 
integrates sociodemographic and population mobility data in a spatially structured 
stochastic disease approach to simulate the spread of epidemics at the worldwide scale. 
We discuss the flexible structure of the model that is open to the inclusion of different 
disease structures and local intervention policies. This makes GLEaM suitable for the 
computational modeling and anticipation of the spatio-temporal patterns of global 
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epidemic spreading, the understanding of historical epidemics, the assessment of the role 
of human mobility in shaping global epidemics, and the analysis of mitigation and 
containment scenarios. 

[36] R. J. Colizza V, Vespignani A, Perra N, Poletto C, Gonçalves B, Hu H, Balcan D, Paolotti D, Van 
den Broeck W, Tizzoni M, Bajardi P, “Estimate of ovel Influenza A / H1 1 cases in Mexico at the 
early stage of the pandemic with a spatially structured epidemic model,” PLOS Currents Influenza 
pp. 1–9, 2010. 

Abstract: Determining the number of cases in an epidemic is fundamental to properly 
evaluate several disease features of high relevance for public health policies such as 
mortality, morbidity or hospitalization rates. Surveillance efforts are however incomplete 
especially at the early stage of an outbreak due to the ongoing learning process about the 
disease characteristics. An example of this is represented by the number of H1N1 
influenza cases in Mexico during the first months of the current pandemic. Several 
estimates using backtrack calculation based on imported cases from Mexico in other 
countries point out that the actual number of cases was likely orders of magnitude larger 
than the number of confirmed cases. Realistic computational models fed with the best 
available estimates of the basic disease parameters can provide an ab-initio calculation of 
the number of cases in Mexico as other countries. Here we use the Global Epidemic and 
Mobility (GLEaM) model to obtain estimates of the size of the epidemic in Mexico as well 
as of imported cases at the end of April and beginning of May. We find that the reference 
range for the number of cases in Mexico on April 30th is 121,000 to 1,394,000 in good 
agreement with the recent estimates by Lipsitch et al. [M. Lipsitch, PloS One 4:e6895 
(2009)]. The number of imported cases from Mexico in several countries is found to be in 
good agreement with the surveillance data. 

[37] A. Asztalos and Z. Toroczkai, “Network Discovery by Generalized Random Walks,” Europhys. 
Lett., vol. 92, no. December, p. 50008, 2010. 

Abstract: We investigate network exploration by random walks defined via stationary and 
adaptive transition probabilities on large graphs. We derive an exact formula valid for 
arbitrary graphs and arbitrary walks with stationary transition probabilities (STP), for the 
average number of discovered edges as a function of time. We show that for STP walks 
site and edge exploration obey the same scaling ~𝑛! as a function of time 𝑛. Therefore, 
edge exploration on graphs with many loops is always lagging compared to site 
exploration, the revealed graph being sparse until almost all nodes have been discovered. 
We then introduce the edge explorer model (EEM), which presents a novel class of 
adaptive walks, that perform faithful network discovery even on dense networks. 

[38] A. Vespignani, “Complex networks: The fragility of interdependency.,” Nature, vol. 464, no. 
7291, pp. 984–985, 2010. 

Abstract: A study of failures in interconnected networks highlights the vulnerability of 
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tightly coupled infrastructures and shows the need to consider mutually dependent 
network properties in designing resilient systems. 

[39] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco, and A. Vespignani, “Multiscale 
mobility networks and the spatial spreading of infectious diseases.,” Proc. Natl. Acad. Sci. U. S. A., 
vol. 106, no. 51, pp. 21484–21489, 2009. 

Abstract: Among the realistic ingredients to be considered in the computational modeling 
of infectious diseases, human mobility represents a crucial challenge both on the 
theoretical side and in view of the limited availability of empirical data. To study the 
interplay between short scale commuting flows and long-range airline traffic in shaping 
the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 
countries around the world and find a gravity model able to provide a global description 
of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured 
metapopulation epidemic model a timescale-separation technique for evaluating the 
force of infection due to multiscale mobility processes in the disease dynamics. 
Commuting flows are found, on average, to be one order of magnitude larger than airline 
flows. However, their introduction into the worldwide model shows that the large-scale 
pattern of the simulated epidemic exhibits only small variations with respect to the 
baseline case where only airline traffic is considered. The presence of short-range mobility 
increases, however, the synchronization of subpopulations in close proximity and affects 
the epidemic behavior at the periphery of the airline transportation infrastructure. The 
present approach outlines the possibility for the definition of layered computational 
approaches where different modeling assumptions and granularities can be used 
consistently in a unifying multiscale framework.  

[40] H. Kim, Z. Toroczkai, P. L. Erdős, I. Miklós, and L. Á. Székely, “Degree-based graph 
construction,” J. Phys. A Math. Theor., vol. 42, no. 39, p. 12, 2009. 

Abstract: Degree-based graph construction is a ubiquitous problem in network modelling 
(Newman et al  2006 The Structure and Dynamics of Networks  (Princeton Studies in 
Complexity ) (Princeton, NJ: Princeton University Press), Boccaletti et al  2006 Phys. Rep. 
424  175), ranging from social sciences to chemical compounds and biochemical reaction 
networks in the cell. This problem includes existence, enumeration, exhaustive 
construction and sampling questions with aspects that are still open today. Here we give 
necessary and sufficient conditions for a sequence of nonnegative integers to be realized 
as a simple graph’s degree sequence, such that a given (but otherwise arbitrary) set of 
connections from an arbitrarily given node is avoided. We then use this result to present a 
swap-free algorithm that builds all simple graphs realizing a given degree sequence. In a 
wider context, we show that our result provides a greedy construction method to build all 
the 𝑓-factor subgraphs (Tutte 1952 Can. J. Math. 4  314) embedded within 𝐾! ∖ 𝑆! , where 
𝐾!  is the complete graph and 𝑆!  is a star graph centred on one of the nodes. 
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[41] D. Balcan, V. Colizza, A. C. Singer, C. Chouaid, H. Hu, B. Gonçalves, P. Bajardi, C. Poletto, J. J. 
Ramasco, N. Perra, M. Tizzoni, D. Paolotti, W. Van den Broeck, A.-J. Valleron, and A. Vespignani, 
“Modeling the critical care demand and antibiotics resources needed during the Fall 2009 wave 
of influenza A(H1N1) pandemic.,” PLoS Curr., vol. 1, p. RRN1133, 2009. 

Abstract: While the H1N1 pandemic is reaching high levels of influenza activity in the 
Northern Hemisphere, the attention focuses on the ability of national health systems to 
respond to the expected massive influx of additional patients. Given the limited capacity 
of health care providers and hospitals and the limited supplies of antibiotics, it is 
important to predict the potential demand on critical care to assist planning for the 
management of resources and plan for additional stockpiling. We develop a disease 
model that considers the development of influenza-associated complications and 
incorporate it into a global epidemic model to assess the expected surge in critical care 
demands due to viral and bacterial pneumonia. Based on the most recent estimates of 
complication rates, we predict the expected peak number of intensive care unit beds and 
the stockpile of antibiotic courses needed for the current pandemic wave. The effects of 
dynamic vaccination campaigns, and of variations of the relative proportion of bacterial 
co-infection in complications and different length of staying in the intensive care unit are 
explored. 

[42] A. Vespignani, “Predicting the behavior of techno-social systems,” Science vol. 325, no. July, 
pp. 425–428, 2009. 

Abstract: We live in an increasingly interconnected world of techno-social systems, in 
which infrastructures composed of different technological layers are interoperating within 
the social component that drives their use and development. Examples are provided by 
the Internet, the World Wide Web, WiFi communication technologies, and transportation 
and mobility infrastructures. The multiscale nature and complexity of these networks are 
crucial features in understanding and managing the networks. The accessibility of new 
data and the advances in the theory and modeling of complex networks are providing an 
integrated framework that brings us closer to achieving true predictive power of the 
behavior of techno-social systems. 

[43] F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo A. Vespignani, D. R. White “Economic 
Networks,” Science., vol. 325, no. July, pp. 422–426, 2009. 

Abstract: The current economic crisis illustrates a critical need for new and fundamental 
understanding of the structure and dynamics of economic networks. Economic systems 
are increasingly built on interdependencies, implemented through trans-national credit 
and investment networks, trade relations, or supply chains that have proven difficult to 
predict and control. We need, therefore, an approach that stresses the systemic 
complexity of economic networks and that can be used to revise and extend established 
paradigms in economic theory. This will facilitate the design of policies that reduce 
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conflicts between individual interests and global efficiency, as well as reduce the risk of 
global failure by making economic networks more robust. 

[44] P. L. Erdős, I. Miklós, and Z. Toroczkai, “A simple Havel-Hakimi type algorithm to realize 
graphical degree sequences of directed graphs,” El. J. Comb. vol. 17, p. 11, 2009.  

Abstract: One of the simplest ways to decide whether a given finite sequence of positive 
integers can arise as the degree sequence of a simple graph is the greedy algorithm of 
Havel and Hakimi. This note extends their approach to directed graphs. It also studies 
cases of some simple forbidden edge-sets. Finally, it proves a result which is useful to 
design an MCMC algorithm to find random realizations of prescribed directed degree 
sequences. 

[45] D. Balcan, H. Hu, B. Goncalves, P. Bajardi, C. Poletto, J. J. Ramasco, D. Paolotti, N. Perra, M. 
Tizzoni, W. Broeck, V. Colizza, and A. Vespignani, “Seasonal transmission potential and activity 
peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility,” 
BMC Med., vol. 7, no. 1, p. 45, 2009. 

Abstract: Background: On 11 June the World Health Organization officially raised the 
phase of pandemic alert (with regard to the new H1N1 influenza strain) to level 6. As of 19 
July, 137,232 cases of the H1N1 influenza strain have been officially confirmed in 142 
different countries, and the pandemic unfolding in the Southern hemisphere is now 
under scrutiny to gain insights about the next winter wave in the Northern hemisphere. A 
major challenge is pre-empted by the need to estimate the transmission potential of the 
virus and to assess its dependence on seasonality aspects in order to be able to use 
numerical models capable of projecting the spatiotemporal pattern of the pandemic. 
Methods: In the present work, we use a global structured metapopulation model 
integrating mobility and transportation data worldwide. The model considers data on 
3,362 subpopulations in 220 different countries and individual mobility across them. The 
model generates stochastic realizations of the epidemic evolution worldwide considering 
6 billion individuals, from which we can gather information such as prevalence, morbidity, 
number of secondary cases and number and date of imported cases for each 
subpopulation, all with a time resolution of 1 day. In order to estimate the transmission 
potential and the relevant model parameters we used the data on the chronology of the 
2009 novel influenza A(H1N1). The method is based on the maximum likelihood analysis 
of the arrival time distribution generated by the model in 12 countries seeded by Mexico 
by using 1 million computationally simulated epidemics. An extended chronology 
including 93 countries worldwide seeded before 18 June was used to ascertain the 
seasonality effects. Results: We found the best estimate R0 = 1.75 (95% confidence 
interval (CI) 1.64 to 1.88) for the basic reproductive number. Correlation analysis allows 
the selection of the most probable seasonal behavior based on the observed pattern, 
leading to the identification of plausible scenarios for the future unfolding of the 
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pandemic and the estimate of pandemic activity peaks in the different hemispheres. We 
provide estimates for the number of hospitalizations and the attack rate for the next wave 
as well as an extensive sensitivity analysis on the disease parameter values. We also 
studied the effect of systematic therapeutic use of antiviral drugs on the epidemic 
timeline. Conclusion: The analysis shows the potential for an early epidemic peak 
occurring in October/November in the Northern hemisphere, likely before large-scale 
vaccination campaigns could be carried out. The baseline results refer to a worst-case 
scenario in which additional mitigation policies are not considered. We suggest that the 
planning of additional mitigation policies such as systematic antiviral treatments might 
be the key to delay the activity peak in order to restore the effectiveness of the 
vaccination programs. 
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IV. Technical highlights  

A) Geo-localized WMD (G-WMD) related work 
 

1) A multiscale approach to network centrality measures 

Multiscale analysis of complex, real networks requires efficient algorithms that are able to analyze 
the network structure on all scales, from the local (node) level to the global (graph diametric) 
level and can extract those subgraphs/structures that are most responsible for the network’s 
principal modes of behavior.  While graph algorithms for local level analysis are well developed, 
there are only few efficient algorithms for a systematic scan of the graph scales, for example, for 
its transport properties. In particular, when trying to determine the vulnerabilities of a network, 
or the consequences of damages to a network following a WMD attack, one has to be able to 
provide an accurate description of the damage levels and consequences across the full range of 
scales. There are numerous examples when a relatively small located damage affects network 
behavior long-distance, causing massive changes in transport function (e.g., cascading failures in 
power grids). To identify these damage “hot spots” and their consequences over scales we have 
developed a systematic approach that ultimately provides the network’s vulnerability backbone 
[6], [7], as presented in the proposal. The vulnerability backbone is the smallest structure whose 
removal or damage causes the largest disruption in the network. 
 
The vulnerability backbone is detected using a betweenness centrality percolation approach, as 
described in the proposal. Betweenness centrality and its many variants [7], describes the 
positioning “importance” of a structure of interest such as a node, edge, or subgraph with respect 
to the whole network. Betweenness centrality lies at the core of both the transport and structural 
vulnerability properties of complex networks. Betweenness centrality of a node (edge, or a 
subgraph) is defined as the fraction of all-node-pair (all source-destination pair) shortest paths 
running through that node (edge or subgraph). Since transport tends to minimize the cost or 
time of the route from source to destination, it expectedly happens along network geodesics 
(shortest- or lowest cost paths), and therefore centrality measures are typically defined as a 
function of these, however generalizations to arbitrary distributions of transport paths have also 
been introduced. Geodesics are important for structural connectivity as well: removing nodes 
(edges) with high BC, one obtains a rapid increase in diameter, and eventually the structural 
breakup of the graph. Nodes (edges) with high BC values play a critical role in network 
transportation and thus damages to them have the largest consequences on transport 
performance. Note that once a node or edge is removed, the distribution of the shortest paths 
(SPs) changes, and accordingly, the BC values also need to be recalculated in order for the 
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breakup process to be the most efficient. While BC is an important and useful quantity, it is also 
computationally costly, and its measurement for networks with millions of nodes will be very 
time consuming. In this project we have introduced a more refined approach to network 
centrality measures, the so-called range-limited centrality, which is able to provide a multiscale 
view of network centrality and it is also computationally efficient. In particular, range-limited 
betweenness centrality (LBC) computes the fraction of shortest paths that are passing through a 
node (or edge) coming from paths not longer than a given value, 𝐿. Here 𝐿 acts as a parameter of 
the multiscale description. In the limit when 𝐿 is equal to the diameter 𝐷 of the graph, we recover 
the original definition for BC. However, now instead of a single BC value associated with anode or 
edge we obtain a set (vector) of LBC values, containing lot more information about the 
positioning importance of the node/edge in the network than a single number. We have 
developed a corresponding algorithm [6] that generates these LBC values efficiently, for all nodes 
and edges in a network. We have first formulated the algorithm for shortest-path (SP) 
betweenness [6] then generalized it to lowest path weight (LPW), or lowest path cost 

 
Fig 1 : A universal scaling of range-limited betweenness centrality in large networks. Erdos-Renyi  graphs (a), Barabasi-Albert scale-free graphs, a 
real-world social network inferred from cell-phone communication logs with 𝑁 = 5  568  785 nodes and 𝑀 = 26  822  764 edges (c) and 
finally for Random Geometric graphs in the plane (d). 
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betweenness in [7]. In the latter case the betweenness of a node or edge is the number of all-pair 
LPW paths that run through that node or edge. In general, calculating all-pair paths is the most 
time consuming part of all centrality type algorithm and it will simply fail on networks with 
millions of nodes or larger. We need an algorithm that circumvents this to a good extent. In 
addition, to better assess damages from the point of view of a node, or of a network region, with 
the source of the damage coming from within some given distance on the network (in terms of 
hop-counts) we need an algorithm that measures betweenness centralities within a given range 
path length.  
 
The efficient limited-range betweeness algorithm we built [6] can be used for directed networks as 

well, which calculates the SP-betweeness value of a node (edge) for all (directed) paths 
emanating from that node (edge) of a given length (binary or hop-count) 𝑙. Producing these 
values for all nodes (edges) we obtain a list, from which one can construct betweennesses 
associated with arbitrary subgraphs. For new 𝑙 values, the algorithm does not recalculate all the 
paths, but it uses the previous lists in a smart way to generate the new values, and this 
considerably speeds up the algorithm.  
 
By introducing such a multiscale decomposition of shortest paths, we have shown [6] that the 
contributions to betweenness coming from geodesics not longer than 𝐿 obey a universal scaling 
versus 𝐿, which can then be used to predict the distribution of the full centralities (by simply 
extrapolating from the scaling relation). This universal scaling can be interpreted as a central limit 
theorem acting on the level of paths. We have developed a mathematical formalism for this scaling 
and have shown that the scaling of centrality measures is related to the scaling of the size of the 

 
Fig 2 : Fast freezing of node ranks by betweenness: a) for a large (5.5 million nodes, 27 million edges) social network inferred from cell-phone 
communication logs and for b) Random Geometric graphs (RGG). The plots show the ranking of the 10 nodes with top betweenness values as 
the range limit is increased. Random geometric graphs are simple models of spatially embedded random graphs. For example, in 2D, an RGG is 
obtained by first randomly placing points within a domain and connecting any two points with an edge that are less than a given distance apart. 
RGG-s can be considered as the simplest models of an ad-hoc network of transceivers. 
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𝑙-th order shell (the set of nodes at shortest path distance 𝑙) around a randomly chosen node. The 
formula behind this scaling is [6]: 
 
 𝜌! 𝑏 =

1
𝑏 𝑑𝑘  𝑃 𝑘 Φ!

!!!

!
ln 𝑏 − ln𝛽! − ln 𝑘  (1) 

 
where 𝑏 denotes node betweenness, 𝜌! 𝑏  is the probability density of nodes with 𝑙-
betweenness value of 𝑏. 𝑃(𝑘) is the degree distribution in the network, 𝑘 denotes the degree 
(approximated as a continuous variable here) and 𝛽! =

!!!
!
   !!
!

 . Here 𝑧!  is the average number 
of nodes found at distance 𝑙 from a central or root node also called average shell size (average 
over all nodes as root nodes) and 𝑘  is the average degree. In many networks the shell size 
grows exponentially with 𝑙, and in this 
case 𝛽!~𝛼!  where 𝛼 = !!

!
 . In other 

networks, such as spatial networks, 
however, the shell size grows as a power 
law 𝛽!~𝑙!  where 𝑑 is the embedding 
dimension (for example for roadway 
networks 𝑑 = 2). Φ!  in (1) is the 
distribution of noise in the shell size of 
order 𝑙, with Φ! 𝑥 = 𝛿 𝑥  (Dirac-delta). 
Φ!   was often found to be Gaussian for 
real-world network datasets. For the class 
of networks in which the shell size 
distribution has finite moments, the 
centrality measures are rescaled to a 
Gaussian distribution, whereas for those 
with diverging moments of the shell-size 
distribution, the corresponding limit 
distribution is a standard Lévy-stable 
distribution (scale-free networks).  These 
scaling results and formula (1) are 
applicable to all large networks. Figure 1 
shows this scaling for several, 
fundamentally different types of 
networks. We have also shown that due 
to the existence of this scaling, we don’t 
need to do full, diameter-path length 
based measurements of centralities 
(which is unfeasibly costly) but we can 
predict centralities and their distribution 

 
Fig 3 : The vulnerability backbone VB of a random geometric graph in the unit 
square with 𝑁 = 5000 nodes, average degree 〈𝑘〉 = 5, and diameter𝐷 =
195. The top 30% of nodes are colored from red to yellow according to their 
𝑙-BC ranking (see color bar). The VB based on the 𝑙-BC is shown for different 
values: 𝑙 = 1,2,5,15,45,195.  
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for all path lengths, up to diameter length. One can also use this scaling relation to show that the 
ranking of nodes and edges by betweenness freezes quickly with the path length 𝐿, and hence 
we can identify early the nodes and edges with top betweenness values with low computational 
cost, as shown in Fig 2.  As a matter of fact, while the principal observation (for example, the size 
of the largest component after subgraph removal based on betweenness values) changes little 
quantitatively (same qualitative behavior), the computational costs of going from 𝑙 = 4 length 
paths to 𝑙 = 6 can add a very large computational overhead for only a modest improvement in 
benefit (increase in costs by several orders of magnitude). With considerably less computational 
costs, our algorithm has allowed us to identify the vulnerability backbone of a network, which is 
the collection of highest betweenness nodes and edges that form a percolating subgraph in the 
whole network. In the context of the cell-phone social network, this backbone is the set of people 
and relationships that are responsible for the fast spreading of information, the network of super 
spreaders.  Figure 3 shows the convergence of the backbone identified from limited range 𝐿 
betweenness measurements to the final (diameter based structure). This paper has been 
published in Physical Review Letters, the top technical journal in physics [6]. Next, we first briefly 
describe the algorithm for un-weighted networks (i.e., for shortest paths), followed by a brief 
description for the weighted case (lowest weight paths).  
 
Definitions and notations: 
-  is the length of the (directed) shortest 
path between vertices  and  

-  is the l-betweenness of node  for a 
given length l, i.e., the number of shortest 

(directed) paths running through  of exactly 
length l.  
-  is the corresponding l-betweenness for 
(directed) edge  . 
-  is the L-range subgraph of node :  
For a given length L it is the subgraph 
centered on node  containing all nodes and 
edges which can be reached from  in no 
more than L steps (along directed paths).  
- Layer  of a subgraph: includes all nodes  for which the (directed) shortest path between 

nodes  and  is exactly l,  (see Fig 4). 
-  is the number of possible shortest paths between vertices  and  . 
- is the number of shortest paths between  and all nodes of layer  .  
 
The Algorithm for the binary case: 

 
Fig 4 : The subgraph  of node A ( ) . Different layers are shown 

with different colors: the first layer is shown in red, the second layer 

in blue, and the third in green. 
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This algorithm generates the l-betweenness values of all nodes ( ) and all edges ( ) in a given 
graph for all l =1,2,…,L.  
 The algorithm proceeds through all nodes  , i=1,…,N. For a given node  it detects and 
counts all the shortest paths which start in node  and have a length smaller or equal than L. 
Gradually constructing the subgraph  it calculates and saves the betweenness values for all 
nodes and edges involved. The initial node is considered to be layer 0 ( ) and .  Every 
node has a sequence of L betweenness values, which are being upgraded as new layers are 
constructed. The following steps are repeated for l = 1,…,L : 

1. Construct the next layer  of the subgraph by including all new neighbors of layer 
 .  

 

2. Calculate the l-betweenness values  for all 
vertices included in this layer , by 
using the values from the previous layer (Fig 
5):   

    
     𝑏!! = 𝑏!!!!!  

where , and there is a directed link 
k→j. 

3. Using the l-betweenness values of the nodes 
just included in the new layer the algorithm 
them gradually calculates the l-betweenness 
values of all edges and nodes of all previous 
layers (note that these values were all zero 
before the new layer was added). Thus, for 
𝑟 = 𝑙 − 1, 𝑙 − 2,⋯,1,0 , the following steps 
are repeated: 
a. Calculate the l-betweenness for all edges between layers r and r + 1. 

The l-betweenness of edge  (  and ) equals to the product of the 
number of shortest paths from  to , and the number of shortest paths from layer l (

) to node  (Fig 6):   
𝑏!→!! = 𝑛!→!𝑛!→!!!  . 
Because  is in layer r, the 
number of shortest paths from  
and equals the r-betweenness 
value of , which was previously 
calculated and saved during the 
algorithm:  
𝑛!→! = 𝑏!! .    
The number of shortest paths from  

Fig 6: The l-betweenness values of the edges between layers 𝑟 and 
𝑟 + 1 and nodes in layer 𝑟 are calculated using the previously 
calculated betweenness values of the nodes in layer 𝑟 + 1. 

 
Fig 5: The l-betweenness of the new layer l is calculated 
using the (l-1)-betweenness values of the nodes in layer l-1. 
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 found in layer  and layer  is obtained as the ratio between the l-betweenness 
and the (𝑟 + 1)-betweenness of :  

               .          

            Thus, finally, the 𝑙-betweeness of edge  can be written as:  

  .  

b. Calculate the 𝑙-betweeness of all nodes included in layer  𝑟. For a given node  
this can be calculated by adding the betweenness values of all edges between  and 
layer   

           𝑏!! = 𝑏!→!!
!  , 

where there is a directed link from  to  and  (Fig 6). 
4. When the l-betweenness values of all layers were calculated, we return to step 1 and find 

a new layer, until all L layers are constructed. 
 

This algorithm calculates the betweenness values from all shortest paths (of maximum length 𝐿) 
starting from vertex 𝑣!  . To find the total 𝑙-betweenness for every node (edge), we have to repeat 
this algorithm for every node 𝑣!   , 𝑖 = 1,⋯ ,𝑁 (and edge) and sum the corresponding values.  
 
The Algorithm for the weighted case 
Calculating betweenness centrality of a node or edge in a directed graph 𝐺 𝑉,𝐸  requires to 
count the number of all-pair shortest directed paths incident on it. Betweenness centrality (BC) is 
defined as: 
 𝐵 𝑖 =

𝜎!" !

𝜎!"!,!∈!
 (2) 

where 𝜎!" is the number of all possible shortest paths from node 𝑚 to node 𝑛 and 𝜎!"(𝑖) is the 
number of shortest paths from node 𝑚 to node 𝑛 passing through node 𝑖. Similar quantities can 
be defined for an edge 𝑖, 𝑗 ∈ 𝐸: 𝐵 𝑗, 𝑘 = 𝜎!" 𝑗, 𝑘 𝜎!"!,!∈! . 
In un-weighted graphs the length of the shortest path between two nodes is measured as the 
number of edges included in the shortest path, or the smallest number of hops along edges 
needed to reach one node starting from the other. In weighted networks each edge has a weight 
or length: 𝑤!" . Depending on the nature of the network, this length can be an actual physical 
distance value (for example in road networks), or any resistance-type quantity. The shortest path 
between nodes 𝑖 and 𝑗 is defined as the path along which the sum of the length of the edges 
included is minimal. We will call this sum as the distance 𝑑(𝑖, 𝑗) the two nodes.  
In order to define a range-limited quantity, let 𝑏! 𝑗 denote the betweenness centralities of a 
node j for all-pair lowest cost directed paths of length 𝐷!!! < 𝑑 ≤ 𝐷! , where D1<D2< … <DL are a 
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series of predefined distances, which we will call regions. The simplest way to define these Dl 
distances is to take them uniformly as 𝐷! = 𝑙  ∆𝑑, however, depending on the application, these 
can be defined in other ways as well.  We will denote the cumulative 𝐿-betweenness as 𝐵! 𝑗 =

𝑏!(𝑗)!
!!! , which represents centralities from paths not longer than DL. Similar measures for an 

edge are defined in the same way.  Just as all centrality algorithms, our method calculates these 
quantities for a node j for shortest directed paths all emanating from a “root” node i, then it sums 
the obtained values for all i � V to get the final centralities for j (similarly for edges). We will derive 
recursions that simultaneously compute the BC for all nodes and edges and for all regions 
𝑙 = 1,⋯ , 𝐿  . The algorithm’s output thus generates detailed and systematic information about 
shortest paths in a weighted graph on all length-scales, providing a tool for multiscale network 
analysis. 
The algorithm starts from a given root i and builds the 𝐿-range subgraph CL containing all nodes 
which are closer than DL. Only links which are part of the shortest paths starting from the root are 
included in CL. We decompose CL into shells Gl(i) containing all the nodes at shortest path 
distance 𝐷!!! < 𝑑 ≤ 𝐷!  from the root. The root itself is considered to be shell 0 (G0(i)). Notice that 
in this case there can be edges connecting nodes which are not in two consecutive layers, but 
possibly further from each other, or occasionally, even in the same layer. An edge j->k is 
considered to be part of the layer in which node k is included. 
When building the subgraph, we will need to save the exact order in which the nodes and edges 
are included in the subgraph. Let us denote with z(j) the index of the node which is included at 
the jth place in this list. This will mean that for the distances of the nodes 𝑧 1 , 𝑧 2 , etc. the 
following conditions hold: d(i,z(1)) ≤ d(i,z(2)) ≤ d(i,z(3)) ≤… . Similarly, we have a list of edges, 
where ux(j)-> uy(j) is the edge in the jth place, ux and uy denoting the index of the two nodes 
connected by the edge. This implies the condition that: d(i,uy(1)) ≤ d(i,uy(2)) ≤ d(i,uy(3)) ≤… When 
calculating the l-betweenness value of a node j, which is in the rth shell Gr(i) of node i, we will 
denote this by 𝑏!! 𝑖|𝑗 , similarly for a directed edge 𝑏!! 𝑖|𝑗 → 𝑘 . Note that these values take into 
account only the lowest cost path starting from node i. 
 
Our algorithm has the following main steps: 
 

1) We build the next layer Gl(i) using breadth first search. We include in this layer all nodes 
for which the distance from the root node is larger than 𝐷!!! but smaller than 𝐷! . During 
the breadth-first search we build the list of indices z, ux, uy as defined above. We also 
update the σij values for all nodes (j) included and the l-betweenness is set to 𝑏!! 𝑖|𝑗 = 1; 

2) Going backwards through the list of edges (saved in ux and uy), we perform the following 
recursions for each edge ux(m) à uy(m): 
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 𝑏!! 𝑖|𝑢! 𝑚 → 𝑢! 𝑚 = 𝑏!! 𝑖|𝑢! 𝑚
𝜎!!!(!)
𝜎!!!(!)

 (3) 

 
 At the same time, the betweenness of node ux(m) is also updated: 
 
 𝑏!! 𝑖|𝑢! 𝑚 = 𝑏!! 𝑖|𝑢! 𝑚 + 𝑏!! 𝑖|𝑢! 𝑚 → 𝑢! 𝑚  (4) 
 
We perform this routine for every root node i in the graph. At the end of the algorithm we have 
the l-betweenness values of every nodes and edges for all regions 𝑙 = 1,⋯ , 𝐿  . 
 

2) Predicting traffic flows in large transportation networks: the case of US 
roadways 

One of the challenges in network science is predicting network flows from graph structural 
properties, node/ edge attributes and dynamical rules. While for some networks (for example, 
electronic circuits) this is a well-understood problem, it is still open in general, and especially for 
networks involving a social component such as communication networks, epidemic networks 
and infrastructure networks. We have focused on the traffic flow prediction problem in spatial 
networks, and in particular in roadway networks, and validated our results using US highway 
network and traffic data (http://libguides.mit.edu/gis). Understanding flows in spatial networks 
driven by human mobility would have many important consequences: it would enable us to 
connect throughput properties with demographic factors and network structure; it would inform 
urban planning; help forecast the spatio-temporal evolution of epidemic patterns, help assess 
network vulnerabilities and allow the prediction of changes in the wake of catastrophic events 
such as G-WMD events. 
 

As our goal was to provide a validated, practically usable method to network flow modeling in 
the wake of single and multiple WMD events and scenario testing, we need to first ensure that 
our approach is able to reproduce actual traffic data; even before WMD event scenarios are 
introduced. Our results, that we describe briefly below have been published in Nature 
Communications [2], with an additional paper to be submitted. 
 
When modelling transportation systems as networks, we associate network nodes with locations 
and edges with physical paths between locations. We define nodes as intersections between the 
roads and the road segment between two consecutive intersections as the edge connecting 
those nodes. We refer to nodes also as sites or locations, interchangeably. Our ultimate goal is to 
determine the average traffic flow 𝑇!"  expressing the number of flow units (for example vehicles) 
per unit time (for example per day) through an edge 𝑖, 𝑗  of the network, given the network and 
the distribution of the population. 
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The principle idea behind our flow modeling is that traffic flows can be computed by modified 
betweenness centrality measures for weighted networks. The weights represent edge costs such 
as physical distance, travel times and capacity limitations (e.g., number of lanes). Node-to-node 
transport happens along total-cost minimizing paths. Collating the minimal-cost paths from all 
node-pairs (𝑎, 𝑏) that run through an edge we obtain the set of paths contributing to the 
average traffic on that edge. However, to compute this traffic, one needs to solve two problems: I. 
the Traffic Law Problem, and II. the Flux Distribution Problem. 
 
I. The Traffic Law Problem	  	  
is a socio-demographic problem. Traffic in the first place is caused by people traveling between 
sites and thus it depends on the distribution of the population 𝜌 𝜑, 𝜆 , where ϕ and λ are the 
latitude and longitude. The Traffic Law problem is to find a generative model between fluxes for 
all source-destination pairs: 

Φ!" !,!∈! = Φ!" 𝑚! ,𝑛! , 𝑟!" ,𝑲 !,!∈!  

where 𝑚!  and 𝑛!  are populations at sites 𝑎 and 𝑏, respectively, 𝑟!"  is the physical distance 
between the sites (as crow flies) and 𝑲 is a vector that includes demographic variables such as 
the number of available jobs. In the second year we have run our simulations with two traffic 
laws: the so called “gravity law”: 

Φ!" = 𝑐
𝑚!𝑛!
𝑟!" ! ,       𝜎 ≅ 2 

 and the “exponential gravity law” introduced earlier (also) within this grant: 

Φ!" = 𝑐
𝑚!

! 𝑛! !

𝑒!!"/!   . 

 

Both models contain adjustable/fitting parameters. 
However, as we do not have an understanding on how these 
fitting parameters should be changed once the network has 
changed (e.g., due to WMD), they are not applicable directly 
to our case. Instead, we have implemented and further 
developed a novel traffic law, called the radiation law, 
introduced by Simini et al. [1].  The main advantage of this 
traffic law is that it has no fitting parameters, except for a 
single overall scaling constant 𝑐 corresponding to the 
average fraction of commuters. The radiation law replaces 
the direct dependence on distance with population size 𝑠!"   
occupying an area within a ring between the two sites 

 
Fig 7: The radiation law uses population density 
instead of physical distances. 
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(cities), see Fig 7. This is plausible, as the chief reason for people commuting is the availability of 
jobs, which correlates with population density. However, people will travel only as far as they find 
the first suitable job for them. According to this traffic law (see [1] for derivation): 
 
 

Φ!" = 𝑐
𝑚!

!  𝑛!
𝑚! + 𝑠!" 𝑚! + 𝑛!+𝑠!!

  . 
(5) 

 

II. The Flux Distribution Problem  
is a network flow computation problem.  According 
to our method, the annual average daily traffic 𝑇!"   
through an edge (corresponding to a road segment 
between two intersections) is obtained from traffic 
fluxes between all those source-destination pairs 
𝑎, 𝑏  for which edge 𝑖, 𝑗  is contained on the 

minimal cost network path from 𝑎 to 𝑏, see Fig 8.  
 
 𝑇!" = Φ!"

!,!|(!,!)∈𝝎!"

 (6) 

 

 

 

 

 

 

 

where 𝝎!"  denotes the minimum-cost network path from 𝑎 to   𝑏  .This is essentially a 
betweenness centrality type calculation with weighted edges. However, this computation is 
rather costly and cannot usually be done online for large networks. This is because we have to 
take into account 𝑁 𝑁 − 1 ≈ 1.9×10!", Φ!"  fluxes for a single whole-network betweenness 
calculation, a calculation with a complexity on the order of 𝒪 𝑁𝑀 ≈ 2.4×10!"  steps for the US 
Highway network data (described below). This is unfeasible for WMD scenario analysis (iterated 
removal and recalculation for various sites and their neighborhoods) for the US Transportation 
Highway network. In order to resolve this problem, we have expanded our range-limited 
betweenness calculation algorithm for non-weighted networks to include weighted graphs as 
well as described in the previous section. This has allowed us to approximate betweenness values 
much more efficiently. The details of this type of betweenness calculations have been published 
in Physical Review E see [7]. Additionally, in collaboration with some of our computer science 

 
Fig 8: Flows are computed based on a weighted 
betweenness centrality type measure, from all-pair lowest-
cost paths. 
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colleagues at Notre Dame we have developed a highly optimized version of this algorithm using 
a novel, purely pointer-based sparse-row implementation with optimal cache behavior achieving 
several orders of magnitude speed-up even on large networks containing millions of nodes and 

tens of millions of edges, as shown in Fig 9.  
 
Data. To validate our flow computing method, we have used US road-network and traffic data 
from MIT’s ArcGIS database. In addition, the population data was obtained from government 
websites publishing census data at the level of zip codes for the whole contiguous US. This 
network has 𝑁 = 1137  267 nodes (highway intersections) and 𝑀 = 174  753 edges (a network 
edge is a road segment between two consecutive intersections).  
 

 
Fig 9: Orders of magnitude speed-up obtained for range-limited 𝑙-betweenness calculations using our pointer-based sparse row 
implementation. The test network used for this simulation was a social network inferred from cell-phone communications having 5 Million 
nodes and about 27 Million edges. 
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The population data is on a different level (zip-codes) than the network data (nodes as 
intersections). One problem was how to assign the population to intersections. This was done 
using a Voronoi tessellation first based on zip-codes, and then distributing the population of a zip 
code uniformly amongst the intersections within that zip-code, see Fig 10b. The next problem 
was defining path-cost. First we used physical distances, however, that did not work well. We 
obtained the best results using minimum travel time paths. To compute minimum travel time 
paths, we used the speed limits associated with the road segments and the physical lengths of 
the roads.  The biggest obstacle was dealing with missing data (missing info on the number of 
lanes and road class for some of the roads). We used a supervised machine learning approach to 
predict the missing data based on the existing ones. We validated our predictions on existing 
data that was not part of the training set to obtain reliable estimates, see [2]. 
 

 
 

Fig 10: Network and population data. (a) The US highway network with nodes as intersections and edges as road segments between 
intersections. It has N=137,267 nodes and M=174,753 edges. The red segments (43%) have recorded annual average daily traffic values. (b) 
Assigning a population size to every intersection (red dots) using a Voronoi mesh and zip-code level census data (zip-code centers indicated by 
black stars); Washington DC area is shown. (c) Geographical area of locations around a node centered in Minneapolis, MN, with travel cost 𝑐!" 
not larger than a given value using travel distance cab as travel cost. (d) Same as (c), but using travel time 𝜏!" as travel cost. 
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Even with time-based costs, the original radiation model, although gave better results than any 
of the gravity models, it was not generating a good Pearson correlation coefficient between 
traffic values from the data and from the model (on the same roads). The model did, however, 
capture fairly well the distribution of the fluxes themselves. We eventually realized what was the 
issue: in our modeling the traffic law problem and the flux distribution problem were decoupled.  
Indeed, traditional models (including our first attempts) are decoupling these two fundamental 
problems in the sense that the Traffic Law is solved first and treated independently of the 
underlying network, and then the fluxes are distributed (2nd problem) on the network using a 
kind of shortest-path based algorithm.  
 

However, we have shown [2] that these two fundamental problems cannot be treated separately 
if one wants to realistically predict network flows. We have shown that the radiation law giving 

 
Fig 11: Schematics for traffic flow modelling. (a) The original radiation model uses distance 𝑟!" as a search criterion. (b) The cost-based radiation 
model uses network travel cost 𝑐!"  as a search criterion, which usually has a heterogeneous distribution (beige shaded region,  𝑠!"). (c) The 
flow 𝑇!"  through edge (𝑖, 𝑗) is the sum of contributions from all those mobility fluxes Φ!"  whose minimal cost paths 𝜔!" contain (𝑖, 𝑗). 
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the travel fluxes between two sites has to be modified such as to take into account the network 
and the cost of travel on the network, see Fig 11.  
We have introduced a novel model, the Extended Radiation Model that now includes a general 
cost function 𝑐!"  (Fig 11) allowing the analyst to compare predictions based on arbitrary cost 
criteria for travel, including those based on travel distance and travel time. Using a large US traffic 
dataset from MIT-s database for validation, we have demonstrated that the travel time based cost 
predictions achieve a significantly better agreement with real traffic than those based on travel 

 
Fig 12: (A) Left panel: comparison between the densities of log(traffic) obtained from data (black line) and the model without capacity 
limitation based on travel distance (blue line) and travel time (red line). The heat maps are scatter plots between real traffic and model 
traffic values without capacity limitation. For the upper map the travel distance cost function with a range limit of 100km was used 
generating a PCC of 0.273. For the lower map the travel time cost function was used with a range limit of 100min and velocity classes 90-
40-15mph, generating a PCC of 0.639.  (B) Same as in (A) but with capacity limitation included. Here the best PCC of 0.752 was obtained 
configuration as in (A). The range limits here were 400km and 400min, respectively. 
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distance alone, see Fig 12. Instead of just comparing distributions of traffic values, we also 
measure the linear correlation coefficient, or Pearson Correlation Coefficient (PCC) between the 
model prediction and real data values. The later is a much more stringent test for the goodness of 
the model than just comparing distributions. A PCC = 1 means perfect agreement. As seen from 
Fig 12, we could achieve a PCC = 0.752 with our model, which is so far the highest achieved that 
we know of. While both the travel distance and travel time based cost-functions do well on 
matching the distribution of flows in the data, only the cost function based on travel times 
achieves a high linear correlation coefficient (PCC=0.752) between the data and model. This 
finding suggests that people preponderantly choose travel paths based on a temporal criterion 
rather than a distance based one. From our analysis it also becomes clear that social behavior is a 
strong determinant of flows in socio-technical networks and for a realistic modeling of the 
consequences of a WMD event, we cannot neglect this component. 

We have also made the unexpected discovery that the extended radiation model generates a 
power-law scaling for the flux density. This scaling holds for over 7 orders of magnitude! See Figs 
13A,B. We have then derived this scaling mathematically from purely network-based arguments. 
The fact that the fluxes become very small beyond a finite range (e.g., already at 100min or 
100km in case of traffic flows) it means that range limited computations can be used effectively 
for flow modeling [7]. Exploiting the direct connection of network flows with betweenness 
centrality measures and the scaling laws they obey we have also provided mathematical 
arguments to why the distribution of traffic is a log-normal (see Fig 13C). Figure 14 shows the 
level of agreement at the specific roadway level between real data and our model generated 
traffic. 

There could exist gravity model versions in the literature that may be used to better match the 
local flow, but they come at the expense of many additional fitting parameters. However, if we 
would need to predict new flow patterns in the wake of network changes such as in the wake of 

Fig 13:  (A,B) Density of source-destination pairs with transport flux Φ based on distance cost function (A) and time based cost function (B). (C) 
Shows that the distribution of flow values in the network is lognormal (that is, the log of the flows is normally distributed).  
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WMD events, it is not clear what values should be used for those fitting parameters on the 
changed network. The main strength of our model is that it is based on first principles and thus it 
can be easily used for flow predictions in the wake of network changes.  Our model can be 
further improved by adding more features, such as actual average speeds on individual roads, a 
better approximation to population distribution at the intersection level, etc.  
  

 
 

Fig 14: A visual comparison. (a) Log traffic values indicated via colours (see colour bar) on major highways in the contiguous US. (b) 
Magnification of a south-east region. (c) Same as in (a) but for the model output using travel time cost with capacity limitation and with the 
same parameters as in Fig. 12b. (d) magnification of the same region from (c) as in (a). 
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3) Studies of changes in transportation flows as a result of G-WMD events

Given our validated flow modeling methodology we started studying the long-range effects of 
geo-localized damages on infrastructure networks, and in particular using the validated model 
for large-scale network flows obtained earlier.  As an analysis test bed for our theory, we have 
used the same large-scale dataset as in the previous case. The geo-localized WMD events we 
have studied were of two sizes: they correspond to the removal of the portion of the network in a 

geographical area of 10km radius in one case, and 20km-s in the other case. 

The 10km radius case corresponds roughly to the equivalent of a B61 tactical/strategic nuclear 
weapon’s blast at about 340kT explosive yield, whereas the 20km radius corresponds to a B53 
strategic nuclear weapon’s blast at 9MT yield.  Once the part of the network was removed, using 
our first-principles based flow model we recomputed the flows in the new network and recorded 
the changes and their distribution. In order to better classify the effects of damages in terms of 
the location of the WMD event, we have classified the locations according to the sizes of the 
population that can be reached from the edges of the blast within a given a cost (55 mins time 

Fig 15: The four classes of nodes used to as ground zero sites for geo-localized WMD events.  
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cost). This yielded 4 classes of initial conditions corresponding to population sizes that are 
roughly equally separated on log-scale, see Fig 15 for their distribution within the continental US. 
Accordingly, from nodes that are in class V1 we can typically reach a population of 0.2x106 
people, from class V2 the population reached is 1.24x106, from V3 it is 3.32x106 and from V4 it is 
9.97x106. In the continental US there are 69 104 V1 nodes, 32 004 V2 nodes, 20 252 V3 nodes and 
15 907 V4 nodes. The latter correspond to large metropolitan areas. The reason that the number 
of V4 nodes is this large is because we resolve the nodes at the level of road intersections, and 
thus all the road intersections in large metropolitan areas enter this set. Figure 3 shows the 
locations of the 4 node types in the continental US. We have selected at random 100 ground zero 
locations from every node class and overlaid the changes in the network flows in the same 
coordinate system. Fig 16 shows the magnitude and extent of the damages into the network for 
the 20km radius affected zone case. Significant flow changes in the network are within a 
neighborhood of about 300kms, but moderate to weak changes along certain paths can spread 
to 1000kms or even further.   
 
Both Figs 16, 17 show that the effects have a slow decay with distance. This means 

 
 

Fig 16: Overlaid network flow-change maps from 100 randomly chosen ground zero sites for 20km radius WMD events. Note that the largest 
non-local effects are when the location of ground zero is within class V2 sites. In case of large metropolitan areas there is massive damage but it 
is more localized as around such areas there is also an overabundance of network paths. 
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mathematically, that the effects measured as the change in flow per edge within a ring of a given 
radius (and thickness of 6km serving as a distance bin) decay slowly, that is algebraically with 
distance (Fig 17).  The long-range effect here is the key observation. This is quite surprising and 
counter intuitive, in the light that this infrastructure network is a spatial network, and unlike for 
example an airline transportation network or an information network, it does not have shortcuts 
or hubs that connect most of the network together and thus would be responsible for a fast 
spread of damage consequences. In the next section, we perform an in-depth analysis of these 
observations of long-range effects from geo-localized damages. 

 

 
Fig 17: Average change in flow per edge at a given distance (x-axis). Left upper two panels are for V1 sites, the right upper two panels are 
for V2 sites, left lower two panels are for V3 sites and the right lower two panels are for V4 sites as ground zero sites. The fits are power-laws 
with small exponents showing that the changes propagate long-range. Within every class, the left panel shows the change for the edges 
that experience an increase in flow, whereas the right panel corresponds to decrease in flow. 



HDTRA1-09-1-0039 Final Report 
 

Technical highlights |  59 

4) Long range and long-term effects from geo-localized WMD events 

Previously we have shown the existence of long-range effects from localized damages in 
infrastructure networks, with applications to WMD. Continuing this line of inquiry, we have 
performed extended simulations of localized network damage scenarios in the US highway 
network and studied its impact on transportation flows.  Using US census and highway traffic 
data we were able to show that in spite the fact that roadway networks as spatial networks do 
not possess shortcuts that would guarantee long-range effects, localized damages can lead to 
significant traffic changes far away from the damage location. These long-range effects are most 
significant when the damage center is located in a few, special points in the network, which we 
call fragility nodes. We have shown that the mechanism behind these non-local effects is not 
based on cascade-propagation, but instead, it is the result of interplay between the 
heterogeneity in the spatial distribution of the population and the spatial heterogeneity of 
available network paths.  
 
Figure 18 illustrates two concrete instances of long-range effects: in case a) a circular region of a 
radius of 30km was removed centered in San Antonio TX and in (b) the same size circular area 
was removed centered around La Porte, IN. San Antonio is a major city with a population of 
about 1.4Mill; it is no surprise that it can cause major effects in traffic flows, even far away from 
the epicenter. However, when looking at the traffic changes after removing the same size circular 
region centered on La Porte, a small, rural town in Indiana, with a population of only 22K, we not 
only see major changes, but we observe significant changes far away, around Detroit and 
Columbus. Epicenters that have such major effects but are otherwise of low population, we call 

 
Fig 18: Examples of long-range effects on transportation flow in the wake of a geo-localized WMD event. (a) An event in San Antonio, TX 
causes long-term traffic increase between Houston and Dallas and other regions (b) An event in La Porte, IN, a very small town (compared 
to San Antonio) causes major changes far away, including between Indianapolis and Columbus and around Detroit. La Porte is a fragility 
point example. The color bar shows the daily traffic changes in the number of cars. 
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network fragility points. Damages at the locations of fragility points have long-range effects on 
network transportation. In the last period we have been working on understanding the 
mathematical conditions that generate such network fragility points. The typical scenario after 
geo-localized network damage in small-population areas is that changes are mostly local, 
affecting the traffic only in the immediate neighborhood of the damaged area. However, there 
are a few special regions, like La Porte, that are fragility points with major long-range effects. 
Figure 2 shows an overlay of traffic flow changes from 1000 damage centers uniformly 
distributed within US, illustrating that effects can propagate within a radius of 600 miles. What 
causes these long-range effects and how can we characterize the corresponding fragility points?  
To answer this question we have performed another set of extended simulations in which we 
only remove the population from the same damage area, but leave the network intact, meaning 
that transportation paths that were previously using those paths are being used (by the 
population in the rest of the network) even after the damage.  We have defined the quantities: 
 
 

𝑆!(!) = ∆𝑇!" ,        𝜎 =
𝑆!
𝑆!
    

!(!)

!"
 (7) 

 

 
 

Fig 19: Overlaid traffic changes after a geo-localized WMD events in 1000 uniformly chosen epicenters in the US. While most traffic 
changes are short-ranged, there are certain epicenters where significant changes can be found far away from the epicenter.  
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where the index 𝐵 indicates the case when both the population and the network was removed 
from the damaged area, index 𝑃 indicates when only the population was removed but the 
network was left intact, ∆𝑇!"  is the traffic change (due to the damage event) on road segment 𝑖𝑗 
and the summation is over all the road segments in the network. The ratio 𝜎 indicates by how 
many times the effects of damage that include the network is stronger than just due to the 
removal of population. A larger than unity value for 𝜎 indicates a network effect. The larger this 
ratio, the stronger is the network effect. Figure 20a shows 𝜎 for 556 damage centers chosen 
uniformly from the network, ordering the damages centers on the x-axis according to their 𝜎 
values increasingly. While we can see that network effects are almost always there, the end tail of 
𝜎 picks up rather sharply for about 46 damage centers with a 𝜎 of 20 or larger. These damage 
centers of nodes form the fragility points of the network. Figure 20b shows the cumulative 
distribution of 𝜎, which obeys a power-law decay. 
 

The significance of long-range, purely network-effects generated consequences of a geo-
localized WMD are shown in Figure 21. In Figure 21a,b we show the case of San Antonio, for 
removal of both network and population (b) and just population (a). There are no major 
differences between the effects in the two cases, showing that the changes in this location would 
be a population effect. However, in the case of La Porte, Figures 21c,d the effects are highly local 
if only population is removed within the area (c), but when the network is also removed, the 
effects are significant and spread far out (d). 
 
The patterns of significant flow changes around a damaged area are similar to propagation of 
cracks in brittle materials, showing tendril-like structures, which then reach far into the rest of the 

 
Fig 20: Separating network effects from population effects in damage consequences. (a) Shows that 𝜎 sharply increases for a small 
number of damage centers indicating the existence of network fragility points. (b) Shows the number of damage centers with a network 
effect ratio 𝜎 larger than 𝑥 vs. 𝑥. 
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network (Figure 19). As we will show next, one can connect the nature of these effects to 
Laplacean growth, which also describes crack-propagation among many similar pattern 
formation phenomena (dielectric breakdown, viscous fingering, etc.) Such phenomena are 

characterized by power-law scaling, which is also demonstrated for our case, in Figure 22. This 
figure shows the average value of the maximum traffic change for road segments at a given 
distance from the epicenter of the damage as function of the distance. The decay is clearly slow, a 
power-law, showing the existence of long-range effects. We have also developed a method that 
can identify high fragility points in the network. The algorithm identifies them within structural 
holes of the network in which there are regions of high population surrounding an area with few 
access paths within the surrounded area. These results are being written up and submitted for 
publication.  

 
Fig 21: Comparison between changes in network flows between cases when only population is removed vs both population and network 
transportation is removed within the affected area (30km radius). (a-b) case of San Antonio, TX, showing a population effect. (c-d) Case of 
La Porte IN shows a strong network effect as it is a network fragility node. 
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5) Mathematical laws characterizing the non-local propagation of localized 
damages 

We have shown previously via a first principles based modeling approach, the features of the 
observed flows in this network are determined only by a few fundamental factors, namely the 
distribution of population, the network structure and a cost-minimization principle.  For that 
reason, we expect that our approach will be applicable to more general flows and network types 
where these factors are present. We have generalized  the radiation law introduced by Simini et 
al. [1], which in its original form did not couple human dynamics with network structure. Our 
model, that is the generalized radiation law [1] is based on first principles that lie at the heart of 
the interactions in the system determining the flows, rather then specific use-cases and fitting 
parameters. This is very important for modeling the consequences of WMD events on 
infrastructure transportation networks for the reason that in the wake of a WMD event we can no 
longer use the same fitting parameters on the modified network that were obtained from a 
normal operating network behavior. That is why we need first principles based models, which 
will work on any network, without the need for uncontrolled or poorly understood fitting 
parameters. While first principles based models will not capture every detail of the system, they 
do capture the overall behavior and the essential mechanisms behind the overall behavior. Our 
contribution was to provide a generalized form of the radiation law coupling it with the network 
structure (using a fundamental principle, namely, cost-minimizing path choice), and 
demonstrated its applicability for traffic flows using US highway data.  
 
Robustness of the generalized radiation law for transport. 
We have also been developing a mathematical understanding of the robustness of the 
generalized radiation law and the universal character of the scaling behavior observed in the 

 
Fig 22:  The decay of the maximum traffic change within a ring of about 5km as function of distance from the damage center is power-law 
indicating the existence of long-range effects. The traffic changes were averaged over 1000 damage centers. 
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real-world traffic data during last year’s work. The scaling behavior shows that the population 
flux Φ!"  from an origin a to a destination b scales as the inverse second power of the population 
𝑠!"  within the domain that can be reached with transportation costs not larger than the cost of 
transportation from a to b: Φ!"~(𝑠!")!!. This scaling with population is then responsible for the 
distribution of the fluxes obeying a scaling law that holds over seven orders of magnitude as 
reported in our paper from last year analyzing the real-world traffic data. We have shown the 
robustness of this scaling law by studying a noisy version of the radiation law in which the choice 
of an agent to travel to a destination site is modified from a Heaviside step function (always 
accepts the choice if the conditions are met) to a probabilistic version in which the acceptance 
probability is given by the well-known Metropolis rate min  (1, 𝑒!!!!), where Δ𝑧 = 𝑧 − 𝑧′, where 
z is the demand value of the agent and z’ is the value offered by the destination site. Here 𝛽 is a 
parameter that is used to tune the degree of uncertainty in the choice acceptance (it is called 
inverse temperature in statistical physics). Performing the calculations with this modified model, 
called the noisy cost-based radiation law we find that the probability for a single agent will have to 
travel from origin a to destination b to meet his demand is given by: 
 
 𝑃 1 𝑚! ,𝑛! , 𝑠!" = 1+

1
𝜇

𝑚!𝑛!
(𝑚! + 𝑠!")(𝑚! + 𝑛!+𝑠!")

− Γ(1+ 𝜇)
𝑚!𝑛!
𝑠!"!!!

 
(8) 

where 𝜇 = 𝛽 𝜆   ≫ 1, assuming a parametric distribution for the demand/offer value z in form of 
𝑝 𝑧 = 𝜆𝑒!!" (other forms lead to similar results). Thus even in the noisy case we see that the 
leading behavior for this probability (which, when multiplied by the size of the population at the 
origin site 𝑚!  gives the flux Φ!") is dominated by the inverse square law behavior, the change 
appearing at the level of small corrections, showing that indeed this is a robust law that can be 
used in modeling scenarios.  
 
Laplacean models of infrastructure networks.  
Previously we have set the goal to explore the hypothesis that the network structure of roadway 
transportation conforms mathematically to Laplacean growth and the corresponding damage 
patterns as well. Many systems although different in their composition and detailed behaviors 
are found to be described by the same mathematics. In particular, the viscous fingering patterns 
grown in the Hele-Shaw cells or patterns by electro-deposition or mineral deposits or dielectric 
break-down - all have the same underlying mathematics, namely Laplacean growth. Knowing the 
mathematical characteristics of infrastructure networks will allow a deeper understanding for 
their protection and mitigation of the effects of WMD events or other catastrophic events. 
Diffusion limited aggregation (DLA) is a physical model based on a stochastic process to simulate 
Laplacean growth phenomena [8], [9]. The mathematics behind all these phenomena is 
governed by the Laplace equation: ∇!𝜑 = 0, where 𝜑 is a potential field that governs the growth 
of the patterns with the corresponding boundary condition at the pattern’s location (which is 
changing in time due to growth). We have observed structural similarities between the roadway 
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network and DLA, both showing similar fractal patterns and having same fractal dimension 
D=1.73.  For the roadway network in Fig 23a) we colored the road intersections on the roadways 
according to the distribution of the travel costs they can be reached from some fixed arbitrary 
site. Since, as we have shown previously, time-based travel costs reproduce with excellent 
agreement the flow patterns, we restricted our studies to this cost measure. The two have 
strikingly similar fractal patterns, however, the autocorrelation function of these patterns are 
different. The autocorrelation is the correlation between the pattern and itself with a shift by 
distance r, as function of r. The decay of the autocorrelation function for DLA is a power-law with 
an exponent of -0.337 as reported by others and reproduced by us as well. On the other hand, 
the autocorrelation function decay for roadway network is a power law with an exponent of -
0.145. However, we could resolve this discrepancy with the observation that the roadway 
network is a coalescence of multiple DLA patterns. We implemented the multiple-site DLA 
simulations using CUDA programming language on a Graphic Processing Unit (GPU) and 
significantly reduced the computation time. The main difference, however between DLA patterns 
and the roadway network is that the roadway network is a mesh of lines, whereas DLA-s are 
clusters of points. However, if we transform the roadway network into its line-graph, we find that 
the corresponding structure can now be compared to DLA type patterns. We have been 
exploiting this observation and finalizing a mathematical model for the evolution of 
infrastructure networks. We expect that the same mechanism will describe other large-scale 
infrastructure networks as well, in which network growth is influenced by population 
distribution, population growth and cost-minimization for transport.  

 
 

Fig 23: a) Regions reachable within a constant travel time based cost in the US highway transportation network. b) a Diffusion Limited 
Aggregation (DLA) pattern obtained from the Laplacean growth equation using a single seed. c) Same as in b) from multiple seeds. The 
generated patterns are structurally similar with same fractal dimension 1.73. 
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Network vulnerability and shattering.  
In parallel, we have continued our research on the vulnerability backbones of infrastructure 
networks. As defined before by us also as part of this project [6], [7], the vulnerability backbone of 
a network is the smallest percolating/connected subgraph whose removal minimizes the size of 
the largest component in the graph remaining after the removal. One can show that finding the 
vulnerability backbone is an NP-hard problem, similar to computing the toughness measure of 
the graph [10]. Thus, we must work with heuristic algorithms. In the last period we were able to 
show that an equivalent formulation can be given to the vulnerability backbone problem using a 
weighted betweenness approach. The idea is to consider a set of edge-weights W = {𝑤!,… ,𝑤!} 
and the associated weighted betweenness values on all M edges. Recall that the weighted-
betweenness of an edge (node) is the fraction of all-pair lowest-cost paths (where path cost is 
computed from the sum of weights along its edges) that run through that edge (node). In [7] we 
provided an algorithm (O(NM)) that computes these betweenness values for all edges and nodes. 
Next, we consider the set of edges (nodes) whose betweenness value is larger than a given 
threshold B. Starting from the largest value for the threshold (the largest betweenness value in 
the network) we gradually lower the threshold and identify the edges (nodes) whose 
betweenness is larger than the threshold. There will be a critical threshold value 𝐵!  at which 
point the subset of edges (nodes) with betweenness larger than 𝐵!  will join into a connected 
giant cluster, percolating through the network. We then remove this largest cluster and we do a 
component distribution analysis on the remaining parts of the network. This procedure shatters 
the network and we are looking to minimize the size of the largest remaining component. The 
procedure itself is polynomial and thus computationally feasible. The NP-hard part was translated 

!

Travel distance based weights Travel times based weights 

a)# b)#

Fig 24: Network vulnerability backbone detection and shattering performance. We used a weighted-betweenness approach to detect and 
remove the vulnerability backbone using a) distance-based weights and b) travel times based weights in the US highway transportation 
network. The travel-time based distances provide a much better performance to network shattering. 
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to the assignment of the weights W = {𝑤!,…𝑤!}. The problem is then finding a weight 
assignment such that the size of the largest remaining component after the removal is as small as 
possible (efficiently disconnecting the whole network). We tested several weight assignments, 
but what we have found is that the weights obtained by assigning travel times on each road 
segment has led to an optimal performance for the shattering algorithm. In Fig 24 we show a 
comparison between two cases. In a) we used travel distances as weights, whereas in b) we used 
travel times as weights. On the y-axis we show the fraction of the largest connected component 
after removing a given fraction of the nodes with the largest weighted edge-betweenness for 
that weight assignment. The different colored curves correspond to different ranges within 
which the node pairs were taken and their contribution to edge-betweenness calculated [6], [7]. 
The faster and the more significant the drop of the curves, the more efficient is the shattering.  
 
As we can see, the time-cost based weights provide a significantly better performance than the 
distance-based weights. In particular, by removing about 20% of nodes we could shatter the 
network such that after the shattering the largest connected component contained less than 
10% of the nodes. In the distance-based weights case removal of 20% still leaves a 40%-large 
connected component. Why are travel-time based weights so efficient in solving this NP-hard 
global optimization problem? The reason lies with the fact that human travel tends to optimize 
travel times and the speed limits are correlated with usage demand. Similar to ant-based 
optimization algorithms, human mobility extracts the structural information necessary for 
efficient travel and adapts to it. In this sense, we are extracting the subgraph for optimal 
shattering/separation from monitoring usage efficiency of the network paths. Figure 25 shows 
the removed subgraphs (red) at various 15% and at 30% threshold of the largest weighted 
betweenness values. The method identifies the high traffic/transport backbone of the network.  

 
Fig 25: Top 15% a) and top 30% b) highest weighted betweenness subgraphs of the US highway transportation network. The removal of these 
subgraphs generates the largest shattering effect on the network corresponding to Figure 24b). 
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6) An E-WMD threat through the International Food Transportation Network (IFTN) 

The weighted betweenness centrality based method to compute the vulnerability backbone of a 
network introduced by us and used for the US Highway Transportation Network as discussed 
above can be applied to transportation networks in general. To test this, and thus further validate 
this method, we applied it in a potential E-WMD type scenario, namely spreading bio-pathogens 
and/or toxins through the international food transportation network (IFTN). In collaboration with 
food science experts from UK and Hungary we have obtained and analyzed data from the UN’s 
statistics division, about the amounts of food (dollar value) imported and exported globally, 
amongst 207 countries within a period of 10 years, 1998-2008. Our analysis of this data [11] has 
shown an amazing complexity underlying this transport network (see Fig 26), a dense network of 
trades making it extremely difficult to trace the origins of any food-borne (accidental or 
intentional terrorism related) diseases. By applying our weighted betweenness approach [7] we 
were able to not only identify the most vulnerable backbone of this network, but also derived a 
contaminant flux model (Fig 27), the results of which are in very good agreement with known 
major cases of food-borne disease outbreaks worldwide (Fig 28). Accordingly, the largest mass 
effect would be achieved if pathogens were introduced in food shipments from the Netherlands 
going through Germany. Such effects are not only in terms of the number of people infected and 

 
Fig 26: The backbone of the International Agro-Food Trade Network (the full network is too complex for graphical representation) of 44 
countries identified with our weighted betweenness centrality method. There are 7 countries here that are responsible (each) for trading with at 
least 77% of all other countries and form the vulnerability backbone, from where contaminants would spread most efficiently into the rest of the 
network. Nodes and edges are both colored by the logarithm of their betweenness values (see color-bar); the thickness of the directed edges is 
proportional to the logarithm of the trade value in that direction. 
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loss of life, but also in the major political and economical repercussions that follow. A case in 
point is the 2011E.coli O104 outbreak in Germany http://blog-
admin.wired.com/wiredscience/2011/07/e-coli-3-years/, with almost 4000 illnesses and 44 
deaths. A detailed study taking several months identified the source of illness in form of seeds 
shipped from a port in Egypt which then “took a tortuous path” through Europe, first through 
Belgium, then The Netherlands (Rotterdam) then Germany.  

 
Note that our study does not predict an 
increase in the number of food poisoning 
cases but that, when it happens, there will be 
inevitable delays in identifying the sources 
due to the increasingly interwoven nature of 
the IFTN. That is, even if food contamination 
was less frequent (for example due to better 
local control of production), its dispersion or 
spread is becoming more efficient. In 
particular, our study identifies critical spots 
in the network that may seriously hamper 
future bio-tracing efforts. Although the 
analysis presented here is based on coarse 
data representing aggregated food fluxes, it 
can also aid with bio-tracing, in a ‘‘Bayesian 
approach’’ sense by providing a list of most 

 
Fig 28: ‘‘Vulnerability vs. betweenness’’ scatter plot for the 44 countries 
with the largest trade activity. Countries with significant food poisoning 
cases in the last 15 years are indicated by encircled symbols. In particular: 
the 2011 Listeria outbreak in the USA, from produce, causing 29 deaths; 
the 2011 E. coli outbreak in Germany, from red beet sprout, with 46 
deaths and 4000 diagnosed cases; the Salmonella outbreak in 2005 in 
The Netherlands with 165 diagnosed cases; the 1996 E. coli outbreak in 
the UK with 512 confirmed cases, 17 deaths; the 2008 Listeria outbreak in 
Canada with 57 diagnosed cases and 27 deaths; the 1996 E. coli outbreak 
in Japan, from radish sprout, with 2 infant deaths and more than 5000 
hospitalized. 

 

 
 

Fig 27 : a) The Contaminant Food Flux Model: Country 𝑖 with population of 𝑃!  has a total yearly agro-food import 𝐼! , out of which 𝑟!𝐼!  is 
exported, and (1 − 𝑟!)𝐼!   is consumed locally. A specific food ingredient to be tracked is produced in this country in the value of 𝑃!   from 
which 𝑃!

(out) will be included into its total export 𝐸! , while 𝑃!
(in)  is consumed locally. The parameter 𝑐 represents the average value (in 

US$) of the food consumed by a person in a year. b) A scatter-plot of degree vs. betweenness for every country. 
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probable sources and pathways to be used as starting points. Our findings were published in the 
journal PLoS ONE [11] with the paper receiving over 3200 views in the first 6 weeks, and several 
news outlets have published feature articles on it. 
 

7) Expanding the predictability range for the Maximum Entropy (MaxEnt) 
Principle  

When we are trying to understand a system or predict its behavior, we usually do that based on 
limited information. In everyday situations we make our decisions and choices using some sort of 
“inner” probability distribution shaped by past experience. However, human decision-making 
tends to be biased; the wiki page [12]  enlists over 150 such biases. Naturally, this raises the 
question whether there is a way to make in-silico, unbiased quantitative inferences based on 
limited information. 
 
The founder of a principled and quantitative approach to unbiased inference making is physicist 
Edwin T. Jaynes.  Standing on the shoulders of Laplace, Bayes and Shannon, Jaynes started a 
revolution in statistical inference with his two seminal papers from 1957 [13] [14].  He based his 
inference method on the notion of statistical ensembles, much in the same way that statistical 
mechanics uses the ensembles of microstates to describe macroscopic properties of matter.  
 
The MaxEnt is based on a simple premise: Given the available information about a system, make 
predictions using only that information and without introducing additional biases. Tautologically 
speaking, once the available information has been incorporated, there is no information left for 
us to exploit. It is equivalent to predicting the throw of a fair coin, or the upside of a thrown fair 
dice. Clearly the uniform choice will be the best choice in this case, but to express this in a 
general and quantitative way, following Jaynes, one uses the notion of information theoretic 
entropy introduced by Claude Shannon. Let  Ω denote the space of all possible states of our 
system of interest. A particular state (which can also be conceived as an “event”) 𝜇 ∈ Ω of the  
system (or microstate in physics parlance) specifies all the variables necessary to uniquely 
determine the state. For our purposes it is sufficient to think of Ω as a discrete collection of states, 
but in general can be a continuous space as well. Our predictions about the system will be in the 
form of a probability distribution 𝑃 𝜇  over Ω. One can think of the available information as 
constraints on the set of microstates that the system can be in: without any information we 
cannot say anything about the state of the system and thus any state is fair game with the same 
probability, i.e., 𝑃 𝜇 = Ω !!and thus the uncertainty is maximum. As information is added, it 
changes the distribution to something else; if we happen to know the precise state of the system 
𝜇!, then 𝑃 𝜇 = 1 for 𝜇 = 𝜇! and 𝑃 𝜇 = 0 for 𝜇 ≠ 𝜇!, and in this case there is no uncertainty. 
Shannon defines information as the amount of surprise we get when some event actually 
happens, whose probability of happening is 𝑃 𝜇 . Without going into details, the information 
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content in the event 𝜇  happening is defined as 𝐼 𝜇 =   − log𝑃 𝜇 . If 𝜇 is the event of snow 
falling in San Diego then when that actually happens is very surprising (large 𝐼 𝜇 ) and even 
news agencies will talk about it, 𝑃 𝜇  is very small (last happened in 1967). The same event 
happening at the North Pole, however, carries no surprise (𝑃 𝜇  close to unity, small 𝐼 𝜇 ). As a 
functional of the distribution 𝑃 𝜇 , Shannon’s entropy 
   
 𝑆 𝑃 = 𝐼 𝜇 = − 𝑃 𝜇

!∈!
log𝑃 𝜇    (9) 

 
expresses the average uncertainty induced by the distribution 𝑃 𝜇 . The available information is 
then inserted in form of ensemble averages of observables 𝑚!(𝜇), 𝑖 = 1,⋯ ,𝐾 (here 𝐾 is the total 
number of constraints):  
 
 𝑚! = 𝑚! 𝜇 𝑃 𝜇   ,

!∈!
      𝑖 = 1,⋯ ,𝐾  . (10) 

 
The 𝑚!  represent values that we know about the system (e.g., we measured them, someone gave 
them to us, or we simply assumed them). Thus, we are looking to find that distribution 𝑃 𝜇  
which obeys the constraints (10), it is normalized 𝑃 𝜇!∈! = 1 and beyond that it is the least 
biased, or maximally uncertain, i.e., for which entropy   (9) is maximal. As Jaynes formulates it, this 
is the distribution that is the least committal towards the unavailable information. Using the 
standard method of Lagrange multipliers we then maximize  (9) subject to (10) and 
normalization, and in the end obtain the parametric family of Gibbs distributions: 
 
 𝑃 𝜇;𝛽 =

1
𝑍 𝛽

𝑒!!∙! !  (11) 

where  
 𝑍 𝛽 = 𝑒!!∙! !

!∈!
 (12) 

 
is the normalization factor, also called partition function. The 𝛽 = 𝛽!,⋯ ,𝛽!  Lagrange 
multipliers are then determined from solving (10) with the form of (11) replacing the 𝑃 𝜇   to 
obtain unique values 𝛽 =   𝛽 𝑚!,⋯ ,𝑚! . This step is also called fitting because these are usually 
complicated equations that can only be solved numerically. 
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An example: Throwing 3-sided dice 

As a simple example, consider a 3-sided 
dice. (On a standard dice repeat every 
number 1,2,3 twice on its opposite sides) 
Thus Ω =    {1,2,3}. Assume that after 
throwing the dice very many times Alice 
reports to Bob the average value of the 
upside face as 𝑚 = 2.5  . Based on this 
information only, Bob wants to compute 
the MaxEnt probabilities 𝑃 1 ,   𝑃 2 ,   
𝑃 3  of the topside face. In this case 
equation (10) is  𝑃 1 + 2𝑃 2 + 3𝑃 3 = 𝑚  and with normalization 𝑃 1 + 𝑃 2 + 𝑃 3 = 1 
we have one more unknowns than equations. The MaxEnt distribution will simply be 𝑃 𝑚;𝛽 =
𝑒!!" , 𝑚 = 1,2,3 and 𝑍 𝛽 = 𝑒!! + 𝑒!!! + 𝑒!!! . Equation (10) becomes a quadratic equation 
for 𝑒!!  with the only valid solution of:  

 
𝑒!! =

𝑚 − 2+ Δ
2 3−𝑚   ,            Δ = −3𝑚! + 12𝑚 − 8 

(13) 

leading to 𝑃 1 = 10− 3𝑚 − Δ /6, 𝑃 2 = Δ− 1 3 and 𝑃 3 = 3𝑚 − 2− Δ 6. In 
particular, for 𝑚 = 2.5, we get 𝑃 1 ≅ 0.116 , 𝑃(2) ≅ 0.267 and 𝑃(3) ≅ 0.617, indicating the 
most likely biases in the dice. The plots of these three probabilities as function of 𝑚 are shown in 
Fig 29. 
 
What if Alice reports 𝑚 = 2 ? In this case 𝑃 1 = 𝑃 2 = 𝑃 3 = 1/3, which are the same values 
as for an unbiased dice. Does this mean that the dice is fair? If the only information we have is the 
average topside face value 𝑚, we cannot say whether the dice is biased, only that the available 
information does not contradict the assumption that it is a fair dice. To see this, assume that Alice 
reports in addition, also the average of the square of the upside face value, i.e., 𝑚!. In this case we 
have full information, namely, as many unknowns as independent equations and we find that 
𝑃 1 = 6− 5𝑚 +𝑚! 6, 𝑃 2 = 4𝑚 −   𝑚! − 3, 𝑃 3 = 2− 3𝑚 +𝑚! 2. Thus, if Alice reports 
that 𝑚 = 2 (same as it would be for a fair dice) but 𝑚! = 5 then 𝑃 1 = 𝑃 2 = 1/2 and 
𝑃 3 = 0, and we actually have a heavily biased dice. For a detailed account on the MaxEnt 
method, its dynamical version MaxCal and for their many applications see the review in Ref [15] 
by Pressé et al. 
 
The degeneracy problem 

We first illustrate the degeneracy problem on a fictitious social network example: Let us assume 
that intelligence agencies have discovered that a new extremist but nefarious and intolerant 

 
Fig 29: MaxEnt probabilities for a simple example. 
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ideology is secretly taking hold across the globe. From indirect evidence and intercepted, but 
heavily encrypted communications it was found that there are 𝑁 = 9 cells involved in terrorist 
activities all over the world under the aegis of this new ideology. Based on their data, the defense 
analysts expect that 𝑀 = 17 pairs of cells interact regularly and that 𝑇 = 19 different triplets of 
cells have collaborated at various times to realize their attacks. However, it is not known 
specifically which cells are interacting with one another and which cells participated in which 
activity at any time. The analysts want to know the likelihood that the 9 cells form a single 
connected network and they also want to find the most likely network that the available 
information 𝑁,𝑀,𝑇  is consistent with. 
 
This problem seems ideal for the MaxEnt method. In this case the set of microstates Ω is formed 
by all the simple, labeled graphs 𝐺 ∈ Ω (here 𝐺 replaces 𝜇 in the above) on 𝑁 = 9  nodes. There 
are Ω = 2!(!!!)/! = 68719476736 such graphs in total. The two constraints in expectation are 
the number of edges 𝑀 = 17 and the number of triangles  𝑇 = 19 . Since the number of nodes is 
small, in this case we can exactly enumerate (in-silico) all the simple, labeled graphs (graphs from 
here on) with a given number of edges and triangles and thus compute exactly all the 
probabilities involved in Jaynes’s method. If 𝛽 is the multiplier corresponding to the number of 
edges and 𝛾 for the number of triangles, after solving (10) for 𝛽, 𝛾 one finds 𝛽 = 1.3017 and 
𝛾 = −0.6325 and the rather peculiar distribution shown in Fig 30. 
 
It seems as if the MaxEnt method is 
confused and cannot make up its mind: 
the microstates (graphs) with the highest 
probabilities (two peaks in the figure) are 
either very sparse (few edges) or very 
dense (almost all connections are there). 
The average number of edges is certainly 
respected from the combination of the 
two types in the sum (10) but the 
individual realizations/microstates are 
rarely near the expected value. Moreover, 
in one case (sparse) the network is 
disconnected into pieces, whereas in the 
other (dense) forms a single component, and both are highly probable. But the situation is even 
worse: since in this case we can enumerate everything, we find that there are 64260 (labeled) 
graphs with exactly 17 edges and 19 triangles but none of them is fully connected. Yet, the 
MaxEnt method tells us that there are a significant number of connected graphs! More precisely, 
the probability that a graph sampled by the MaxEnt method will be fully connected is 0.6. None 
of the connected graphs (of the 60%), however, has 17 edges and 19 triangles; they don’t have 

 

Fig 30: Distribution of graphs with given number of edges in the MaxEnt 
model for the terrorist network of cells. 
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the observed property at all. This answer is completely useless for our analysts.   This effect is 
called degeneracy, and has been known for nearly three decades, since the works of David Strauss 
[16] in social networks. Other examples of degeneracy are shown in our paper [17], one involving 
the well-known karate-club dataset by constraining the number of edges and two-stars, another 
involving a network of jazz musicians, where we constrain three quantities in expectation: edges, 
two-stars and triangles and a third example involving groups of permutations (related, e.g., to 
predicting outcomes of horse races). Note that the constraining values 𝑀,𝑇   could have come 
from an actual realization/state of the system from Ω. A degenerate distribution in this case may 
even predict a near zero probability for the realization from which the data was obtained! 
Historically, in degenerate cases people simply have thrown away the existing data and tried 
choosing other types of measures and data for it. With some luck, degeneracy would be avoided. 
This is certainly unsatisfactory, as we might not be able to collect new data on other types of 
measures (as in the case of the nefarious network of cells above), or the measures used are of 
particular interest in the field (like triangles in sociology). We thus have to have a method that 
maximally exploits the data that is available to us, instead of avoiding them. 
 
What causes degeneracy in the MaxEnt method? 

To answer that, let us first make the observation from (11) and (12) that all microstates (graphs in 
our case) that share the same values for the measures 𝑚 will all have the same MaxEnt 
probability. So instead of summing over the space of microstates (which is impossible because it 
is huge and usually we know very little about it), we can gather all the terms (microstates) in the 
sum with the same 𝑚 into one group and then sum over the range of values for 𝑚. In particular, 
the partition function (12) becomes:  
 
 𝑍 𝛽 = 𝒩 𝑚 𝑒!!∙!

!
 (14) 

 
where 𝒩 𝑚  is the number of microstates with given values for the measures 𝑚. In physics this 
function is called the density of states (d.o.s) function. Thus, the averages (10) can be expressed 
as  
 

𝑚! = 𝑚!   𝑝 𝑚;𝛽
!

!!!!!

      𝑖 = 1,⋯ ,𝐾  . 
(15) 

 
where  
 𝑝 𝑚;𝛽 =

𝒩 𝑚
𝑍 𝛽

 𝑒!!∙!  . (16) 
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Note that in all the above the 𝑚 appear as free variables. Eq. (16) expresses the probability that 
the MaxEnt distribution generates (or samples) a microstate with given values for measures 𝑚. 
Thus, in degenerate cases 𝑝 𝑚;𝛽  shows two or more peaks as function of 𝑚 (see our paper for a 
more precise description). Since the exponential in (16)  is a monotonic function of 𝑚  it then 
follows that the culprit behind degeneracy is the d.o.s function 𝒩 𝑚 . In the paper we prove the 
following theorem: 

 

Theorem: A MaxEnt model is non-degenerate if and only if the density of states function 
𝒩 𝑚   is log-concave. 

A function is log-concave if the log of the function, that 
is, log𝒩 𝑚  is concave. The fact that one can pinpoint 
the cause of degeneracy is the good news. The bad 
news is that it is related to properties of the function 
𝒩 𝑚 . It is a counting function, giving the number of 
objects in some space that all share the same property, 
for example in our case the number of simple graphs on 
𝑁 nodes with a given number of edges and a given 
number of triangles (precisely that many, not on 
average!). This is a purely mathematical/combinatorial 
object and has nothing to do with MaxEnt, probabilities 
or inference, however, its properties determine whether 
the MaxEnt method will show degeneracy. The bad 
news is that counting problems are among the hardest 
problems in discrete mathematics. Even those problems whose decision version is easy (they are 
in P), their counting version can be very hard (from #P-complete). For example, deciding that 
there is perfect matching in a bipartite graph is easy (has a polynomial-time algorithm) but 
counting their number is very hard (no such algorithm). 
 
For a function 𝒩 𝑚   to be log-concave, two conditions 
need to be fulfilled. On one hand the domain 𝒟 of 
𝒩 𝑚    has to be geometrically convex and on the other, 
it has to fulfill the Prékopa-Leindler inequality. In many 
cases the first condition is broken, such as in our 
example of the nefarious network with 𝒩 𝑚 =
𝒩 𝑚|,𝑚△   illustrated in Fig 31. Since the domain is 
curved, waxing-crescent shaped, the domain is non-
convex (a straight segment with end-points close to the 
tips will have most of its points outside the domain). Fig 

 
Fig 31: The d.o.s. function on 9 nodes (color intensity) 
with given number of edges and triangles. The cross 
hair is at 17 edges and 19 triangles. 

 
Fig 32: The MaxEnt model samples the graphs according to a 
bimodal distribution (peaks are at darker blue regions). 
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32 then shows in this 2D map the bimodal distribution of graphs 𝑝 𝑚;𝛽   as sampled by the 
MaxEnt method. The non-convexity of 𝒟� comes from the fact that the variables, i.e., the 
components of 𝑚 are not independent, more precisely, they are non-linearly dependent on one 
another. In classical statistical mechanics the constraining variables (in expectation) are 
independent quantities characterizing different types of interactions with the environment such 
as pressure (mechanical interactions), chemical potential (chemical or particle exchange), 
temperature (thermal), magnetic susceptibility (magnetic), etc. In this case the domain of the 
d.o.s. function is always convex (a hyper-rectangle) and degeneracy does not occur. Note that if 
the variables are linearly dependent, the domain is still convex and degeneracy does not occur in 
this case either (assuming the concavity condition for the log of the d.o.s. is valid). 
 
Can we eliminate degeneracy? 

Assume that we don’t have the possibility to switch to a different set of variables, but instead we 
have to work with the available measures and the data for them. Still using the same data, and 
without losing information we would like to make good predictions based on the MaxEnt 
approach. Let us call our original (degenerate) model (or ensemble) the MaxEnt 𝑚  model 
(ensemble). The idea is to introduce a one-to-one mapping (thus no information is lost) from the 
original variables (and the data for them) to new ones 𝑚 ↔   𝜉 = 𝐹 𝑚  such that the 
corresponding d.o.s. function (number of microstates with given 𝜉), 𝒩′ 𝜉   is now log-concave 
and thus the new model (ensemble) MaxEnt 𝜉  is non-degenerate. Since 𝐹 is bijective, the 
number of states with 𝜉 is the same as the number of states with 𝑚 = 𝐹!! 𝜉 , i.e.,   𝒩! 𝜉   =
𝒩 𝐹!! 𝜉 . The observation behind our idea is that while a function could be concave (or 
convex), its composition with another function, in the new variables can have altered convexity 
properties. Note that such mappings do not require the collection of new data! One simply 
applies the transformations on the data we 
have.  
While we do not have a general method for 
finding such transformations, in concrete 
situations they can be done relatively easily. A 
simple example of degeneracy in our paper 
[17] is the case when the constraining 
variables are the number of edges 𝑚|, and the 
number of wedges (2-stars) 𝑚∨. Since on 
average the latter is proportional to the 
square of the former, we may choose 
𝜉| = 𝑚|

! and 𝜉∨ = 𝑚∨ (the choice is not 
unique, see our paper). In our terrorist 
network example, we may choose 𝜉| = 𝑚|

!  and 𝜉△ = 𝑚△. In all these cases the new model 
MaxEnt 𝜉  will be non-degenerate and based on the same input information with 𝜉! =

 
Fig 33: In the corrected model, MaxEnt!𝜉!, typical samples are drawn 
from near the original data values. 
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𝐹! 𝑚1,⋯ ,𝑚𝐾  (chosen that way). Since MaxEnt 𝜉  is 
a new model, we may ask how far are the averages 
of 𝑚!  within the new MaxEnt 𝜉  ensemble from the 
original data values 𝑚! . Since, for example, instead 
of requiring that the number of edges on average is 
10, we now require that the square of the number of 
edges is 100 on average—we do not expect this to 
cause differences that are too big. Indeed, we can 
show that due to the fact that the new MaxEnt 𝜉  
ensemble is concentrated around 𝜉 ⎯⎯ , the 
differences are actually rather small (see the last 
paragraph on pg 3 of our published paper [17]), and 
the new model still respects (10) with good 
approximation. Fig 33 shows the corrected MaxEnt 
distribution by edge-number (black) for the case of 
the nefarious network. Indeed, the samples are now coming with high probability from around 
the observation value of 17. The red in Fig 33 shows the probability that a MaxEnt sampled graph 
with a given edge number will be disconnected and the green that it will be connected; now the 
MaxEnt predicts that 94% of sampled graphs will be disconnected, much better than previously. 
Fig 34 shows the MaxEnt distribution in 2D, in the corrected MaxEnt 𝜉  model; it is concentrated 
around the observation values. Fig 34 is in terms of the original variables; in terms of the new 
ones it would have a convex shape, see our paper [17]. 
 
Discussion 

In our work we have shown that the root cause of degeneracy in MaxEnt models is the existence 
of non-linear constraining relationships between the variables. One can eliminate degeneracy by 
using a one-to-one nonlinear mapping to a set of new variables (using the same data), and 
defining a MaxEnt model based on these new variables. The new MaxEnt model will be 
generating samples with high probability from the neighborhood of microstates for which the 
given constraints are typical, and the mean values of the original variables in this new model will 
be close to the original input data. A few comments on MaxEnt models are in order, 
notwithstanding degeneracy issues. 
 

A. The input data may be applied within a frequentist or a Bayesian framework. The data 
may come from several repeat observations and the averages represent actual averages 
of those observations (frequentist). Or, based on our best knowledge we may believe that 
we can interpret the single dataset available to us as representing typical values and thus 
we choose to treat them as expected values (Bayesian). In the latter case we will actually 
generate a MaxEnt ensemble within which the input values are indeed typical. However, if 

 
Fig 34: The corrected MaxEnt!𝜉! distribution as function of 
the complete set of variables. 
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the data came from an atypical or special state of the system, then our predictions will be 
off when compared against new empirical data for those predictions. When that happens 
we know that our view of the system is off and thus we can use the MaxEnt as a tool to 
help update our understanding of a complex system. 
 
B. Given a set of constraining measures 𝑚 we sometimes want to predict the value (in 
expectation) of another measure (such as the number of triangles knowing the number of 
edges and 2-stars), or even its distribution. This can only be done to the extent that the 
constraining measures determine the variable of interest. However, if the variable of 
interest is independent from the constraining ones, the MaxEnt model will be useless for 
predicting that variable, because the information we have says nothing about what we 
are interested in. Jaynes makes the observation that this aspect is actually a strength of 
the MaxEnt method: if our predictions are way off for a quantity of interest when 
compared against empirical data, it means that we have not included the relevant 
variables into our model for that quantity. Unfortunately, this does not say what are the 
relevant variables, just that the ones used are irrelevant. 
 
C. The output of the MaxEnt model is the distribution (11) and we have to sample 
microstates from Ω according to this distribution. This, in itself, is a thorny issue and one 
typically does it using a Markov Chain Monte Carlo algorithm. As a matter of fact, this step 
is a computational bottleneck that limits in general MaxEnt applications. However, this 
difficulty can be somewhat circumvented by using proper sampling algorithms.  
 
D. One of the original criticisms of Jaynes’s method was its subjective (Bayesian) nature. 
Namely, physical reality does not depend on our state of knowledge and thus it brought 
into question the method that maximizing the information entropy (which expresses the 
uncertainty in *our* knowledge about a system) can be used to generate predictions 
about physical reality. However, since then several authors, starting with Shore and 
Johnson have demonstrated that any algorithm that draws inferences about probability 
distributions in a self-consistent and unbiased way will be maximizing the entropy 
function   (9) — see e.g., [15].  

 
Open problems 

MaxEnt based prediction methods are principled and used extensively in applications in 
practically all fields of natural sciences. However, there are still a number of issues with them (the 
degeneracy problem we tackled being one of them) that warrant further investigations: 

1. Is there a general method/algorithm that computes/generates the mapping 𝐹 when 𝒟 
is simply connected such that in the new variables the counting function is log-concave? 
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In 2D, we know from the Riemann mapping theorem that there is a conformal mapping 
that takes any simply connected domain into the unit disk in the complex plane, which 
could be applied in this case. What about higher dimensions? Can we define 𝐹 as a 
computable flow that maps a non-convex 𝒟 into a convex 𝒟! ? 

2. Speeding up the sampling (MCMC) process of the microstates according to the MaxEnt 
distribution (11). 

3. Another computational difficulty is solving for the Lagrangean multipliers in ( 3 (or (15)), 
because in general we do not know explicitly the counting function. This is usually done 
approximately, with various stochastic root-finding methods that have various issues, and 
thus better methods would be desirable. 

 
8) Degree-based modeling  
One of the fundamental approaches in network modeling is constructing synthetic networks 
based on partial data or with statistical characteristics similar to data. Frequently, this data is 
given on the level of degree sequences or degree distributions. However, given a sequence of 
degrees, there can be many graphs having that sequence for the degrees of its nodes. For 
example, Erdos-renyi random graphs and random geometric graphs both have Poisson degree 
distributions, yet they have very different other properties (clustering, path lengths, etc.). The 
number of graphs with a given degree sequence is typically a very large (exponentially large) 
number already for modest size graphs, one cannot possibly construct all of them. Thus in 

 
Fig 35: Graph sampling by our direct-construction method for undirected graphs. a) Probability distribution of the logarithm of weights for an 
ensemble of power-law sequences with 𝑁 = 100 and decay exponent of 𝛾 = 3. The ensemble contained 2×10!  graphical sequences, and 
for each sequence 10! graph realization samples were produced. Thus, the total number of samples produced was 2×10!". The simulation 
data is given by the solid black line and a Gaussian fit of the data (corresponding to lognormality) is shown by the dashed red line that nearly 
obscures the black line. b) Performing the same fits as in a) but for various systems sizes 𝑁 (same 𝛾 = 3) here we plot the growth of the mean 
(m) and the width (𝜎) of the Gaussian as function of 𝑁. These show that the spread grows slower than the mean which means that the 
distribution in the large system limit approaches a Dirac-delta function and thus sampling becomes uniform, asymptotically. A similar behavior 
has been found also for directed graphs, see [21]. 
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network modeling problems one needs to study network observables over graph ensembles and 
formulate our answers in statistical terms.  In order to avoid biases due to graph sampling in our 
conclusions, one has to generate uniform random samples of graphs with the given degree 
sequence or distribution, so that we can assess to what extent a certain observable describing a 
process or phenomenon (e.g. rate of disease spread) is determined by the given information, in 
this case the degree sequence. Uniform sampling from graphical realizations of a given degree 
sequence is a fundamental component in simulation-based measurements of network 
observables, with applications ranging from epidemics, through social networks to Internet 
modeling. Existing graph sampling methods were either link-swap based (Markov-Chain Monte 
Carlo algorithms) or stub-matching based (the Configuration Model). Both types are ill controlled, 
with unknown mixing times for link-swap methods and uncontrolled rejections for the 
Configuration Model. We have solved this problem via several contributions to both the MCMC 
swap-based sampling and stub-matching methods. 
 
In the stub-matching approach we adopted an entirely different, but rigorous method, by 
providing a direct construction algorithm, which generates the graph samples with calculable 
weights. These weights can then be used to account for biases in an exact fashion. For undirected 
networks the mathematical theorems at the basis of our algorithm were published in Journal of 
Physics A: Mathematical and Theoretical [18]. Due to its important and fundamental nature, after 
peer review, the journal decided to publish our result as a Fast Track Communication (FTC). 
According to the journal, FTC’s are “outstanding short papers reporting new and timely 
developments”. The algorithm we subsequently developed was published in [19]. For directed 
graphs (directed graphical degree sequences) the mathematical theorems we developed for our 
algorithm were published in [20]. The algorithm we developed subsequently was published in 
[21]. Our algorithms in both cases generates graphical realizations of a degree sequence in 
polynomial time and statistically independently from one another. Our algorithms do not create 
the graphs uniformly, but with known weights. These weights then can be used to correct for 
sampling biases within an importance sampling scheme and generate in the end the graph as if 
they were sampled uniformly at random.  In contrast with previous methods, our algorithms do 
not require back-tracking or rejections. We have also shown that for large networks, and for 
degree sequences admitting many realizations, the sample weights are expected to have a 
lognormal distribution. This is shown in Fig 35 on examples, where we applied our algorithm to 
generate networks with degree sequences that were drawn from power-law distributions.  
 
The second general approach to graph sampling is based on Markov Chain Monte Carlo (MCMC) 
using edge-swaps. The algorithm itself is much much simpler than those by direct construction, 
however, its mixing time is one of the hardest open math problems today, and since it is 
unsolved, MCMC graph sampling simulations are ill-controlled. We have to start from an element 
of the ensemble of graphs with a given degree sequence, and then we choose at random 
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independent pairs of edges and swap the ends. This operation preserves the degree sequence 
but it changes the graph. The mixing time, closely related to the relaxation time is the typical 
number of swaps we need to do in order to approach the uniform stationary distribution of the 
Markov chain within a prescribed distance. This distance is measure usually as the largest 
variation distance and can be related to the spectral gap of the Markov transition matrix. With the 
exception of special classes of degree sequences (usually regular degree sequences) so far no-
one has been able to show that the MCMC method mixes fast, i.e., the samples generated loose 
the memory of the starting point within a polynomial number of steps. We have recently added 
to the set of fast mixing proofs for another class of degree sequences, more precisely for graph 
sampling constrained by joint degree matrices (JDMs). These are actually more complex 
constraints than just degree sequence based.  
 
Joint-degree matrix based sampling of graphs 
A joint-degree matrix specifies the number of connections between nodes of given degrees, for 
all possible degree values. Given a JDM it uniquely specifies the degree sequence, however, a 
degree sequence admits many JDMs. Modeling of networks based on JDMs allows us to fully 
control degree-degree correlations, or the level of assortativity. For example, social networks are 
characterized by strong degree assortativity, whereas most other networks 
(technical/infrastructure or biological) they are characterized by negative degree correlations. 
Having efficient algorithms to construct and/or sample networks with given JDMs allows us to 
construct better models based on data collected from real-world networks. These results apply 
not only to networks of immediate interest to DTRA, but to network science in general. However, 
JDM based construction and sampling problems are much harder to tackle, as they require the 
development of several pure mathematical theorems and their proofs. We managed to bring 
results in this area as well and published two main papers on this topic. In one of the papers we 
developed a novel proof technique for fast mixing by Markov Chain Monte Carlo edge-swaps 
over balanced realizations of  graphs with given JDM, published in Siam Journal of Discrete 
Mathematics [22]. This methodology combined with novel results on graph decompositions into 
split graphs has recently allowed us to produce a proof for fast mixing for exponentially large 
classes of novel uni-partite and bipartite degree sequences (manuscript under preparation). 
 
In parallel, we have also developed a direct construction based algorithm for sampling graphs 
with given JDM, i.e. with prescribed degree correlations. This work was published recently in [23]. 
 
The case for more general constraints: How random are complex networks? 
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We have also undertaken an extended analysis of 
the levels of randomness found in real-world 
complex networks, which shows that for most 
cases, our methods of network modeling based 
on degrees and degree correlations is sufficient to 
capture the nonrandom of the network. In 
particular, one reads off from the data network all 
the degree correlations within subgraphs of order 
at most 𝑑 (𝑑𝑘-series) see Fig 36, then randomize 
the edges of the data network so as to keep all 
these series (up to 𝑑) intact. The original and the 
randomized data network are then compared. 
Usually, low-order correlations (𝑑 = 2− 2.5) are 
sufficient to capture all significant network 
properties in real world networks. This work has 
been published recently in the journal Nature 
Communications [24].  
 

9) Network Discovery by generalized random walks 

The principal goal here was to develop efficient algorithms that can assess the damages in the 
shortest time possible in a network. Assuming localized damages in the infrastructure due to a G-
WMD one is tasked to find efficiently the part of the network that has been destroyed or 
incapacitated. In order to find and assess these parts, one needs to interact with the network or 
send out walker swarms to walk and read/discover the network (software or physical). We have 
studied the assessment problem under the more general case of network discovery when the 
whole network is unknown, and focused on the network crawling method.  In particular, for 
efficient explorations of large-scale networks, we have investigated properties of network 
discovery by walkers that follow edges with some transition probability, in the most general 
setting of arbitrary but stationary transition probabilities (STP). Let 𝑝! 𝑠!|𝑠  be the probability 
that a walker, who after 𝑛 steps is currently at node 𝑠, will take the next step onto neighbor 𝑠! of 
𝑠. These single-step transition probabilities are stationary if they are independent of 𝑛, i.e., 
𝑝! 𝑠!|𝑠 = 𝑝 𝑠!|𝑠 . We have derived exact expressions for the average number of discovered 
nodes 𝑆!  and edges 𝑋!  after 𝑛  steps  (more precisely for their generating functions), for 
arbitrary graphs and arbitrary STP transition probabilities (STP walkers). Let 

 
 𝑆 𝜉 = 𝜉! 𝑆!

!

!!!
    and      𝑋 𝜉 = 𝜉! 𝑋!

!

!!!
 (17) 

 
Fig. 36: dk-series. 1k-series is the sequence of degrees; dk-series 
specifies the sequence of joint degrees of small subgraphs on d 
nodes. Published recently in Nature Comm. [24]. 



HDTRA1-09-1-0039 Final Report 
 

Technical highlights |  83 

 
be the corresponding generating functions and let 𝑃 𝑠!|𝑠; 𝜉 = 𝜉!!

!!! 𝑃 𝑠!|𝑠;𝑛  be the 
generating function for the site occupation probabilities 𝑃! 𝑠!|𝑠 . Then:  
 
 𝑆 𝜉 =

1
1− 𝜉 𝑊 𝑠; 𝜉 𝑃 𝑠|𝑠!; 𝜉

!∈!

    (18) 
and  
 
 𝑋 𝜉 =

𝜉
1− 𝜉 𝑊 𝑠; 𝜉 𝑃 𝑠|𝑠!; 𝜉   

!∈!
 (19) 

with 
 𝑊 𝑠; 𝜉 = 𝑏!!   and  𝑊 𝑠; 𝜉 = 𝛼  

1+ (𝑑 − 𝑐)𝛽𝜉
1+ 𝑎𝛼 + 𝑑𝛽 𝜉 + (𝑎𝑑 − 𝑏𝑐)𝛼𝛽𝜉!

!!∈!

 (20) 

 
where 𝑏 = 𝑏 𝑠; 𝜉 = 𝑃 𝑠|𝑠; 𝜉  , 𝑐 = 𝑃 𝑠!|𝑠!; 𝜉  are return probability generating functions, 
𝑎 = 𝑃 𝑠|𝑠!; 𝜉  , 𝑑 = 𝑃 𝑠!|𝑠; 𝜉  and 𝛼 = 𝑝 𝑠!|𝑠  , 𝛽 =   𝑝 𝑠|𝑠!  are the STPs. These exact 
expressions, valid for any STP walk and any connected graph allows us to study the properties of 
network discovery as function of time (the corresponding probabilities can be obtained from the 
generating functions via Cauchy’s formula or via several asymptotic methods). In particular, using 
these expressions we have shown that for STP walkers both edge and node discovery follows the 
same scaling law on large networks, independently on the form of the stationary transition 
probabilities. Hence, the discovered or the visited part of the network will be sparse (the number 
of discovered edges scaling linearly with that of the discovered nodes), presenting a strongly 
skewed structure compared to the underlying network's (the true structure). Only after a 
crossover time of 𝒪(𝑁) (where 𝑁 is the number of nodes) will the edges become increasingly 
discovered, which in the case of large networks means unfeasibly large wait times. Thus via 
rigorous proofs we eliminated STP walks as an efficient methodology for faithful edge discovery 
on large networks. One can therefore easily miss damaged edges via crawling using time-
independent transition probabilities. Our results thus rigorously show that efficient/faithful 
discovery can only be done with adaptive walkers, whom use time/history dependent 
information for their transition probabilities (ATP). Visiting history information can be thought of 
as “pheromone" trails on the network, which the walker uses through its rules for stepping onto 
the next site. There is a plethora of possible rules using past history, however, to keep memory 
requirements low (bounded) on a walker, the desirable rules are the ones that only use 
information from the local neighborhood of the walker. In this vein, we have introduced a simple 
adaptive walk, the Edge Explorer Model, which is greedily biased towards already visited regions 
within a 2-step neighborhood. We have shown that on dense graphs the EEM performs near 
optimally or optimally (Fig 37). These results have been published in [25]. 
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10) Translational results 

Many of the methods and theories developed in this project are general and can benefit the 
larger class of network science research problems. Many of our methods have been and are 
being applied by other authors. However, we have also made use of these approaches on some 
of our other projects, e.g. in [26]. In particular, we have used the network modeling techniques 
such as the MaxEnt method, and the betweenness centrality results on brain neuronal networks. 
The data for these works have been generated by a neuroanatomy group from Lyon, France, 
using retrograde tracer experiments in the macaque brain and also in the mouse brain. Our 
modeling approach has revealed a previously unsuspected organization of the interareal cortical 
network. Our network model, called the Exponential Distance Rule model (EDR) is able to capture 
(without fitting parameters!) the structural characteristics of the real cortical network in the 
macaque, and most recently in the mouse as well and predicys well new experimental findings. 
These findings have been published in several publications, in top neuroscience journals, such as 
Neuron, Cerebral Cortex and PNAS, all acknowledging DTRA support. These are:   [27], [28], [29], 
[30], [31]. 
 
 
  

 
 

Fig 37 : The Edge Explorer Walker on a) complete graph (worst case) and Erdos-Renyi random graph b). The y-axis shows the density of the 
discovered part of the network; the red is the true density of the underlying network. The yellow curve shows the measured/perceived density of 
the discovered network as function of time by a simple random walker (thus STP type) and the orange green shows the the same quantity for 
the Edge Explorer Walker (ATP type). 
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B) Bio-pathogen WMD (E-WMD) related work 
 

1) Multiscale interactions in reaction-diffusion models 

During the life of the project we completed the analysis and integration of a variety of multiscale 
mobility networks worldwide. This has allowed us to construct the first synthetic multiscale 
mobility networks describing the daily human mobility at the worldwide scale. The extensive 
analysis of these networks has allowed us to draw a general gravity law for commuting flows that 
reproduces commuting patterns worldwide. This law is statistically stable across the world due to 
the globally homogeneous procedure applied to build the subpopulations around transportation 
hubs.  The gravity law allows us to work with two different worldwide commuting networks. An 
entirely synthetic one, generated using the gravity law fitted to the empirical data, and one 
integrating the empirical data.  The worldwide mobility network has been used to study the 
impact of the network multiscale features in the dynamical behavior and patterns of spreading 
and diffusion process.  In order to deal with the integration of computing intensive multiscale 
equations we have developed a mechanistic approach coupling different elements of the 
mobility network through effective interactions accounting for the mobility of individuals. 
 
These results have been published on the Proceedings of the National Academy [3], and have 
been integrated in a general computational platform that can be used to study diffusion 
processes at the worldwide scale.  We specify the definition and integration of the different data 
layers composing the model and the computational platform in a BMC Infectious Disease 
publication [32]. The construction of the mobility network and the derivation of the stochastic 
mobility equations among different subpopulations are described in detail as well. We illustrate 
the time-scale separation technique that allows for the integration of the mobility processes 
occurring on small time scales as effective coupling terms. This method reduces the 
computational cost by simulating in an explicit way only mobility processes occurring on the 
long time scales.  
 
In order to assess the level of realism offered by the multiscale approach we have also 
undertaken a major effort to perform a side by side comparison of the developed computational 
model with an extremely detailed agent based model [33]. Indeed, agent-based models provide 
a very rich data scenario but the computational cost and most importantly the need for very 
detailed input data has limited its use to country level. On the opposite side, the multiscale 
model is scalable and can be conveniently used to provide contagion world-wide scenarios and 
patterns with thousands of stochastic realizations. In this perspective, it is clearly important to 
assess the level of agreement that the two different approaches can provide on the quantities 
accessible in both cases and the respective data needed and computational costs associated. The 
results obtained in our study show that both approaches provide contagion patterns that are in 
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very good agreement at the granularity levels accessible by both approaches. This is an 
extremely encouraging result that paves the way to the construction of hybrid models 
combining the agent-based and the multiscale approaches according to the available data and 
computational resources. 
 
The availability of the computational platform integrating multiscale networks has led to the 
development of interactive network visualization tools of non-local damage spreading in 
complex-multiscale networks. In particular, we have been working on the analysis and network 
visualization of the epidemic invasion tree of epidemics in geographically structured 
populations. Humans are the carrier of the pathogen, and the large-scale travel and commuting 
patterns that govern the mobility of modern societies are the substrate over which epidemics 
and pandemics travel. Microsimulations of epidemic outbreaks can provide information at very 
detailed spatial resolutions and down to the level of single individuals. In addition, 
computational implementations explicitly account for stochasticity, allowing the study of 
multiple realizations of epidemics with the same parameters' distribution. While on one hand 
those capabilities represent the richness of microsimulations methods, on the other hand they 
face us with a huge amount of information that requires the use of specific data reduction 
methods and visual analytics. In the study of the global spreading of epidemics, it is possible to 
develop models that keep track of single individuals flying on specific airline connections that 
carry the infections from one area of the world to another (generally urban or census areas). This 
produces a considerable amount of data in each single microsimulation of the epidemic process; 
data which are then multiplied by the number of stochastic realizations needed to extract 
meaningful statistical patterns.  
For this reason, one convenient data reduction technique consists in the mapping at the global 
level of the geographical infection trees. These networks identify in each microsimulation the 
"infector" city of each "infected" city. In other words, every time an individual carries the disease 
from a city i to city j, we draw a link that shows that the infection propagated along that 
connection. On its turn, each "infectee" city can be the 'infector" of another city, giving rise to a 
tree that characterizes the spatial spreading of the disease at the city level, as measured from the 
movement of single individuals. By repeating the microsimulation process, each city j can have a 
single infector source i, or several possible infector sources.  The average of 𝑝!"  over all 
realizations will give us the resulting probability of city i being the infector of city j. To obtain the 
infection tree from a set of simulations sharing the same source of the outbreak, one can use the 
Directed Minimum Spanning Tree of the corresponding network using a Chiu-Liu/Edmonds 
algorithm, where the cost of each edge wij is given by the probability 1-pij. This procedure will 
result in a directed spanning tree where every node j has no more than one incoming edge, 
corresponding to the most likely infection path that leads to the outbreak at each infected node. 
In Fig 38 we show the infection tree of a numerical pandemic obtained with the Global Epidemic 
and Mobility (GLEAM) computational model.  
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The infection trees provide a cartography of the evolution of pandemics starting from different 
seeds as soon as we know the basic parameters governing the risk of infection of individuals and 
duration of the disease. The infection tree also lends itself to further analysis in which it is 
possible to evaluate the role of each node or group of nodes in the spread as well as shed light 
on the global circulation of seasonal influenza. 
 

 
Fig 38 : Network representation of the infection tree. The origin of the outbreak is the city of Hanoi, Vietnam, colored in black. The color 
code for the nodes goes from dark red, meaning early arrival of the disease, to light yellow for wider time gap between the outbreak in 
Hanoi and the arrival on the corresponding node. The size of each node is proportional to the degree. The labels are related to the hub at 
the corresponding branch. 
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The use of the infection tree provides a meaningful representation of the epidemic spreading, 
statistically aggregating the microsimulations results, thus proving this data reduction technique 
a valuable visual tool in the mapping of the progression of epidemics in the case of scenario 
analysis and pandemic preparation plans. The invasion tree analysis has been published in the 
journal “Network Science” [34]. 
The developed algorithms for multiscale networks have all been integrated in the publicly 
available computational platform Global Epidemic and Mobility model (GLEAM). This also 
includes the development of appropriate plug-ins for the analysis of the intentional release of a 
E-WMD pathogens, along the necessary documentation for their use in the GLEaMviz tool 
(www.gleamviz.org). 
 

2) Resilience of structured population networks 

At the early stage of the project we have focused on the analysis of the onset of specific critical 
tipping points in the spreading of biological agents and information processes in populations 
characterized by highly regular mobility networks. Human mobility patterns have been shown to 
be highly predictable and generally dominated by a set of specific locations and recurrent bi-
directional flows across those locations, the typical example being the everyday commuting 
patterns to the work place of millions of individuals. These recurrent mobility patterns are poorly 
modeled by the random diffusion processes generally used to study spreading processes. We 
have developed a framework based on a time-scale separation technique to analyze the behavior 
of contagion and spreading processes in a network of locations where individuals have memory 
of their location of origin. We find a phase transition between a regime in which the spreading 
phenomenon affects a macroscopic fraction of the system and a regime in which only a few 
locations are affected.  For disease and information spreading processes the phase transition 
critical point defines an invasion threshold that depends also on the mobility parameters, 
providing guidance on how to control disease and information spreading by constraining 
mobility processes. We recover the threshold behavior in the analysis of diffusion processes 
mediated by the real data of human mobility pattern.  
 
In order to develop a model of highly regular mobility patterns we have considered the prime 
example of commuting flows. In this case we consider a metapopulation system with V distinct 
subpopulations, each of which has a population size 𝑁! . The V subpopulations form a network in 
which each subpopulation i is connected to a set of other subpopulations U(i). The edge 
connecting two subpopulations i and j indicates the presence of a flux of commuters. We assume 
that individuals in the subpopulation i will visit anyone of the connected subpopulations with a 
per capita diffusion rate σ. As we aim at modeling commuting processes in which individuals 
have a memory of their location of origin, displaced individuals return to their original 



HDTRA1-09-1-0039 Final Report 
 

Technical highlights |  89 

subpopulation with rate t. These parameters thus influence the probability that individuals 
carrying infection or information will export the contagion process in nearby subpopulations. If 
the diffusion rate is approaching zero, the probability of contagion of neighboring 
subpopulations goes to zero as there are no occasions for the carriers of the process to visit 
those. On the other hand, if the return rate is very high the visiting time of individuals in 
neighboring populations is so short that they do not have time to spread the contagion in the 
visited subpopulation. In order to find an explicit expression for the parameters’ value that 
separate the regime in which the contagion process is suppressed from the regime in which the 
contagion process invades the entire system we have used a time scale separation technique 
that defines quasi-stationary mixed subpopulations (see Fig. 39). Each mixing subpopulation 

identifies the number of individuals Nij of the subpopulation i visiting subpopulation j. This 
approximation allows the writing of a subpopulation branching process for the contagion 
process at the subpopulation level, yielding an explicit form for the condition that defines the 
invasion of a macroscopic fraction of the subpopulation network; i.e. the percolation transition of 
the contagion process. We have performed accurate simulations for the study of the invasion 
threshold in synthetic graphs and realistic commuting networks in the USA and find that the 
results are in very good agreement with the analytical predictions.  The findings of this part of the 
activity resulted in high impact publications in the journal Nature Physics and Journal of 
Theoretical Biology [35], [36]. These publications are opening the path to the inclusion of more 
complicated mobility or interaction schemes and at the same time provide a general framework 
that may be used not just as an interpretative framework but a quantitative and predictive 
framework as well. Understanding the effect of mobility and interaction patterns on the global 
spread of contagion processes can indeed be used to devise enhanced or suppressed spread by 
acting on the basic parameters of the system in the appropriate way, which might find 

 
Fig 39 : Modeling scheme for the analysis of the resilience to contagion processes of structured populations coupled by commuting mobility 
patterns. Left: Coupling of two subpopulations by commuting fluxes defining mixing subpopulations. Right: Invasion process of the contagion 
process via the mobility of individuals.  
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applications ranging from the protection against emerging infectious diseases to viral marketing. 
For this reason, the basic algorithm and schemes defined during the research activity have been 
integrated in a general computational approach to infectious disease modeling. A detailed 
presentation of the global epidemic and mobility model (GLEAM) including the contribution due 
to recurrent mobility patterns has been published in the Journal of Computational Science [37]. 
 
The geographical structure of population is at interplay also with the social network structure of 
the population experiencing a biological threat. For this reason, we have also achieved several 
results concerning the coupling of self-initiated behavioral changes in the progression of 
contagion phenomena. Behavioral changes vary from simply avoiding social contact with 
infected individuals and crowded spaces to reducing travel and preventing children from 
attending school. In all cases we have a modification of the spreading process due to the change 
of mobility or contact patterns in the population. In general, these behavioral changes may have 
a considerable impact on epidemic progression such as the reduction in epidemic size and delay 
of the epidemic peak. We have carried out two different studies aimed at coupling contagion 
models with social adaptive behavior.  
 

 
Fig. 40: Analysis of the contagion behavior and the associated invasion threshold. Upper plots: Both plots report the behavior of the number of 
subpopulations invaded by and susceptible-infected-removed contagion process as a function of the commuting rate. On the left we show the 
results from numerical simulations in a synthetic network. On the right we report the simulations for the network defined by the commuting 
fluxes among USA counties. The bottom panel compares the spreading in time of the contagion process in the USA county network below and 
above the invasion threshold. Below the invasion threshold the contagion process spontaneously dies out while above the threshold it invades 
almost 100% of the USA. 
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The first study aims at developing a general mathematical framework describing the different 
mechanisms that consider the spread of awareness of a disease as an additional contagion 
process. Three mechanisms were proposed. In the first, basic model the social distancing effects 
and behavioral changes are only related to the fraction of infected individuals in the population. 
In the second we modeled the spread of awareness considering only the absolute number of 
infected individuals as might happen in the case that the information the individuals rely on is 
mostly due to mass media reporting about the global situation. Finally, in the third model we 
added the possibility that susceptible people will initiate behavioral changes by interacting with 
individuals who have already adopted a behavioral state dominated by the fear of being 
infected. This apparently simple interaction allows for the self-reinforcement of fear. We have 
found that these simple models exhibit a very interesting and rich spectrum of dynamical 
behaviors. We have found a range of parameters with multiple peaks in the incidence curve and 
others in which a disease-free equilibrium is present where the population acquires a memory of 
the behavioral changes induced by the epidemic outbreak. This memory is contained in a 
stationary (endemic) prevalence of individuals with self-induced behavioral changes. Finally, a 
discontinuous transition in the number of infected individuals at the end of the epidemic is 
observed as a function of the transmissibility of fear of the disease contagion. The results of this 
study have been collected in paper published on the interdisciplinary journal [38]. 
The second line of work concerned the coupling of behavioral changes of the population with 
the large-scale network describing the mobility of people across location in the USA. This work, 
that builds also on the above general results concerning the coupling of contagion processes 
and social adaptation, introduce a simple mechanism that provides individuals with the 
propensity to avoid locations affected by contagion processes. Although the aim of such a self-
initiated behavior is to prevent an individual's exposure to the pathogen, it may lead to the 
unanticipated effect of facilitating its spread to new locations. The results presented in this paper 
underline the importance of the proper consideration of self-initiated behavioral responses to 
the spreading of an emerging infectious disease including a possible pathogen due to a 
biological WMD attack. The results of this study are collected in a paper published in [39].  
 
We have also studied the effect of population structure when multiple infectious agents circulate 
in a given population of hosts, and they interact for the exploitation of susceptible hosts aimed at 
pathogen survival and maintenance.  The dynamic of infectious diseases has been traditionally 
studied focusing on single pathogens one at a time, increasing attention is currently being 
devoted to the interactions among multiple infectious agents. Interaction mechanisms can 
indeed alter the pathogen ecology and have important evolutionary, immunological and 
epidemiological implications. We used mathematical and computational model for disease 
transmission between hosts and for the mobility of hosts in a structured metapopulation 
network to study the competition between two pathogens providing each other full cross-
immunity after infection. Depending on the rate of mobility of hosts, competition results in the 
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dominance of either one of the pathogens at the 
spatial level – though the two infectious agents 
are characterized by the same invasion potential 
at the single population scale – or co-circulation 
of both. We have also explored explore 
systematically the role of epidemiological and 
immunological (i.e. reproductive numbers of the 
two pathogens and cross-immunity) and 
ecological parameters (spatial distribution of the 
hosts and mobility) in defining the co-circulation 
dynamics of competing pathogens. The 
competition dynamics is reconstructed through 
extensive numerical simulations of a stochastic 
mechanistic model i.e. a multispecies reaction-
diffusion model in a complex metapopulation 
network (see Fig. 41). 
 
We provided an extensive numerical 
characterization of the interaction dynamics by 
varying the degree of cross-immunity and the 
difference in the epidemiological traits of the 
two pathogens (basic reproductive numbers 
and infectious periods). Depending on the 
relation between the pathogens' traits, mobility 
can play a determinant role or be non-influential 
for the outcome of the competition. In the space of epidemiological parameters, there exists a 
region for which lowering the traveling probability induces a cross over from the fast strain 
dominance to the slow strain one. This behavior is determined by the trade-off between 
epidemic growth and potential for spread at the spatial level, the former being an advantage in a 
well mixed population while the second being relevant in a sparse environment with 
intermediate or low mobility coupling. Our study characterizes the epidemiological conditions 
under which hosts' traveling behavior is a determinant ingredient in the competition dynamics. 
Reducing the degree of cross-immunity determines a rapid transition between the picture 
described here to a situation of no competition in the spatial propagation. This transition 
behavior can be framed within a herd immunity paradigm, where the more rapid pathogen acts 
as a vaccine in the spreading dynamics of the other one. 
The modeling framework here introduced allows us to account for important features 
characterizing host mobility patterns in a realistic way. Despite the complexity of the dynamics 
simulated by the mechanistic model, the analytical formulation of the global invasion potential 

 
Fig 41: (a) Scheme of the metapopulation structure in patches and 
links representing mobility. (b) Individual state of the 
compartmental model of the two-strain infection.  
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allows for simple analytical considerations able to shed light on the behavior observed in 
numerical simulations. The network formalism is an important ingredient of the model and 
represents an element of novelty with respect to previous studies on disease ecology where the 
space is introduced by placing individuals on a regular lattice or by assuming a metapopulation 
with two levels of mixing (high mixing within patches and low mixing between patches). The 
results concerning structured populations and competing pathogens have been summarized in 
papers [40], [41]. 
 

3) Mitigation and containment of “Secondary” Epidemic (E-WMD) threats 

The escalation of terrorist activities in the last decade has spawned a growth of interest in 
modeling the course of a deliberate introduction of a highly pathogenic agent such as smallpox 
under different scenarios. Studies have been mostly focusing on strategies to contain local 
outbreaks after their detection, showing that timely coordinated intervention with vaccination, 
contact isolation and tracing are able to halt ongoing transmission. All studies however do not 
consider the possibility that the present human mobility volume could escalate to an 
international dimension the smallpox outbreak even before an official warning could be issued. 
For this reason we have studied simulate the international spreading of smallpox release in the 
time preceding the declaration of the contagious disease emergency. We show that in wide 
range of plausible values for the key epidemiological parameters and release scenarios, index 
cases and potential outbreaks can occur in several countries in different continents before an 
international emergency is declared. This has two major implications: i) bioterrorism targeting 
only a specific country is instead going to have global effects; ii) the attack may eventually trigger 
outbreaks in countries where the deployment of effective containment measure and policies is 
unlikely because of the lack of health infrastructure and medical resources.    In particular, we 
have focused on the level of threat for USA in the case of a bioterrorist attack outside its border, 
namely a European country such as UK or France.  
 
What we are interested in is the quantitative assessment of the risk of the internationalization of 
the outbreak and the number of countries involved.  Building on previous works of this project 
(especially the computational platform published in [32], we have developed a large-scale 
structured metapopulation model that accurately describe the worldwide spread of smallpox 
during the initial period of time between the occurrence of the intentional virus release and the 
issuing of an international emergency. Clearly, this risk assessment depends on the time elapsed 
from the biological attack. The point of interest is therefore the time at which the international 
community is able to issue a worldwide alert and starts implementing containment and 
mitigation policies. This includes the ability of an effective contact tracing, the deployment of 
vaccine stockpiles for ring vaccination, travel restrictions, etc. Theoretically, the earliest time at 
which the detection can occur is when the first person in the rash stage is correctly diagnosed. 
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Due to the current rarity of the disease and the difficult diagnostic, it is likely that an alert would 
only be possible after several civilian cases had already occurred.  
 
In our study we assume that 4 individuals are required to be hospitalized before successful 
detection is feasible and an alert issued and perform a sensitivity analysis in the range of 2 to 8 
individuals. We are therefore measuring the distribution of the number of countries affected and 
the specific risk posed for each individual country at detection time. In addition, from the 
successful detection of the 
smallpox outbreak to the 
implementation of effective 
contact tracing and a worldwide 
coordinated response, including 
the deployment of vaccine, most 
of the experts consider a time 
window ranging from 1 to 4 
weeks. For this reason, we report 
data also for the four consecutive 
weeks proceeding the outbreak 
detection.  
 
Our findings are summarized in 
the following table where we 
report the top 20 countries at risk 
providing the probability of 
infection and the expected 

 
Fig 42: Global spread through the human worldwide mobility network of a highly 
pathogenic agent (smallpox) after a localized intentional release. Correlation between 
the probability of experiencing an outbreak (secondary WMD event) in a given country 
and the traffic with the initially targeted country. In the present figure the initial target 
country is UK (city of London). 

Country Initial  det ectio n After 1 week  After 3 weeks 

Outbreak 
probabili
ty (%)  

Condition
al number 
of cases 

Outbreak 
probabili
ty (%)  

Condition
al number 
of cases 

Outbreak 
probabili
ty (%)  

Conditional 
number of 
cases 

UK 100 28 [18-40] 100 68 [43-102] 100 239 [152-355] 

USA 33 1 [1-5] 56 2 [1-11] 96 9 [1-41] 

Germany 18 1 [1-4] 34 1 [1-9] 82 4 [1-30] 

France 16 1 [1-4] 31 1 [1-10] 81 4 [1-30] 

Italy 15 1 [1-4] 29 1 [1-9] 76 3 [1-28] 

Spain 15 1 [1-5] 29 1 [1-10] 76 3 [1-31] 

Ireland 13 1 [1-4] 25 1 [1-9] 70 3 [1-25] 

Netherland
s 

9 1 [1-4] 18 1 [1-8] 59 2 [1-22] 

Switzerlan
d 

9 1 [1-3] 17 1 [1-8] 55 2 [1-20] 

Canada 6 1 [1-3] 11 1 [1-9] 40 2 [1-24] 

Belgium 5 1 [1-4] 10 1 [1-8] 38 2 [1-22] 

Table 1 
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number of cases.   
 
Not only is the risk never geographically restricted, even at the time of detection or just a week 
later when the first interventions might be feasible (see Table 1 and Fig 42), it also increases 
rapidly both in terms of exposure size and probability. The reason for such a rapid global spread 
is due to the fact that London serves as a major connecting point between the various 
continents, with daily connections to Europe, Africa, Asia and the Americas. However, other 
major hubs in the USA or Europe produce the same results as shown in the published paper [42]. 

 
Our research shows that biological targeted attacks on a single country or city can result in a 
global threat. For instance, an attack in the UK or any European countries is very likely resulting in 
a WMD threat on the USA. For instance, while previous studies have pointed out that the timely 
response to a smallpox outbreak is very likely to be successful, those accounts have only 
considered the case of single countries with very effective health systems and medical resources. 
The present work indicates that a deliberate smallpox release is very likely to assume an 
international dimension even before the outbreak is identified.  
In order to quantify in more detail, the impact of human mobility network in the analysis of 
secondary E-WMD threat we have studied the correlation between the probability of any given 
country of experiencing the importation of infectious individuals and the traffic with the initial 
targeted country (see Fig.42).  We find a strong correlation that however indicates that traffic 
reductions are not going to drastically reduce to zero the importation probability unless 

 
Fig 43: Global spread through the human worldwide mobility network of a highly pathogenic agent (smallpox) after a localized intentional 
release. Invasion tree mapped at the level of the WHO surveillance regions. In the present figure the initial target country is France (city of Paris). 
The tree shows the circulation of the infectious cases and the corresponding seeding of local outbreaks. 
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implemented with 90% efficacy.  As the 
overall traffic reduction is not a viable option, 
we have been focusing on optimal mobility 
control strategies and/or network 
restructuring that lower the non-local spread 
across subpopulations helping the 
mitigation and containment of secondary E-
WMD threats.  
 
We have been working with the Global and 
epidemic Mobility model developed in the 
previous years to draw scenarios from and 
define risk assessment metrics to threats 
posed by E-WMD in a wide spectrum of initial 
conditions and localized releases. The goal is 
the understanding of the long-range 
spreading pathways defined by the human 
mobility network (see Fig. 44). We have 
proceeded by using an analysis of the 
geographic invasion tree capturing both the 
hierarchy and the most probable 
transmission routes of the released pathogen released in an E-WMD event.  
 
The invasion network of the E-WMD event is generated by performing several simulations (runs) 
for the same initial target k, and calculating for every city (or country pair i and j) the conditional 
probability 𝑝!"  that city i export infectious individuals to city j when the E-WMD event starts at 
source k. The invasion network is then constructed by taking this value as the weight for the edge 
between cities i and j. An invasion tree can be generated by considering the minimum spanning 
tree defined by an appropriate metric defined by the weights of the invasion network. With the 
invasion tree in hand, we can try to obtain the collection of sources that generates a similar 
worldwide flow. This would allow to group location according to the similarity of the secondary 
events pattern and define control regions for the mitigation and control of the E-WMD event.  In 
order to establish the similarity between the invasion tree of different initial E-WMD target we 
have defined several distance metrics characterizing the similarity of networks. Namely we have 
considered Minkowski,  Hellinger, Jaccard and Tversky similarity measures. For all these measures 
we have defined the similarity matrix M among 4,000 possible E-WMD targets across the world 
(Fig 44). This matrix allows the clustering of E-WMD targets in groups defining very similar 
spreading pattern and surveillance areas (see Fig 45).   On the basis of the obtained clustering we 
are working on: 

Fig 44: Global spread through the human worldwide mobility network 
of a highly pathogenic agent (smallpox) after a localized intentional 
release. Correlation matrix and clustering of the similarity between 4,000 
WMD urban areas targets spread across the world. The clustering allows 
the identification of urban areas generating similar invasion trees 
worldwide for the pathogenic agent.   
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1. General classification of urban areas according to quantitative risk assessment 
metrics of secondary E-WMD threats. 

2. Optimal mobility control strategies informed by the invasion tree structure. 
 
 
The results presented here have been summarized in a paper published in Scientific Reports [42] 
In parallel in order to validate the effectiveness of the modeling strategy in the analysis of the 
early global spread of highly pathogenic viruses, we have performed the study of the early 
spreading of the H1N1 pandemic, recovering results in simulating case importation, travel 
restriction efficacy and the global timeline of the pandemic in very good agreement with 
empirical data. These results have been published in PLoS One [43].  
A specific tutorial, reported among the publications in this report, has been prepared to provide 
guidance in the use of the computational platform GLEAMViz in the study of smallpox like E-
WMD events. 
 
Achieving the containment of pandemic potential pathogens is also strongly dependent on the 
natural history of the disease.  For instance, the severe acute respiratory syndrome (SARS) 
epidemic has been successfully contained by public health interventions that succeeded in 
reducing the transmissions among individuals. This has not been the case of the H1N1 2009 
influenza pandemic that has assumed global proportion in a few months.  A key feature of the 
disease that determines its controllability is the amount of asymptomatic transmission events; i.e. 
the fraction of infections due to infectious but asymptomatic individuals. The key difference 

 
Fig 45: Global spread through the human worldwide mobility network of a highly pathogenic agent (smallpox) after a localized intentional 
release. WMD targets clustering. Colors identifies groups of urban areas that give rise to very similar invasion tree for the pathogenic agent. Each 
group defines different containment strategies based on the restructuring of the mobility network.    
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between these two cases is the amount of asymptomatic transmission events. The larger the 
number of non-detectable transmission and the smaller is the likelihood of containment. For 
potential pandemic pathogen, however, the spatial structure and mobility of the population are 
crucial features that contribute to the global spread of the infectious disease. It has been recently 
shown that along the local epidemic threshold, which depends only on the disease parameters 
and is responsible for the epidemic outbreak within each subpopulation, structured populations 
may exhibit a global invasion threshold that determines whether the system is globally invaded 
by the contagion process. This novel threshold depends on the mobility rates and patterns of 
individuals [35], [36] and cannot be uncovered by continuous deterministic models as it is related 
to the stochastic nature of the mobility and contagion processes. For potential pandemic 
pathogens, it is therefore extremely relevant to quantify the success of control measures in 
averting global spreading and how the large-scale spatial controllability on the outbreak 
depends on the proportion of non-detectable transmissions. 
 
We have developed a metapopulation model in which subpopulations are connected through 
heterogeneous fluxes of individuals. In each sub-population the epidemic dynamics is 
characterized by an influenza-like-illness compartmental model with tunable amount of non-
detectable infection processes. At the single population level, we can recover the condition for 
the containment of the local outbreak by means of the isolation of symptomatic individuals as a 
function of the asymptomatic infections and the inherent transmissibility of the pathogenic 
agent (as measured by the basic reproductive number R0. We are also able to provide analytical 
expression for the global controllability of the outbreak defined as the condition that although 
the disease may spread in a single population, it is not able to spread across multiple populations 
of the metapopulation system. We interestingly observe that the local and global controllability 
are defined by different conditions that defines a region of parameters where while the global 
spreading is controllable, local control at the level of single population is not. This region defines 
a new window of possibility for the containment at least of the large-scale spreading of the 
infectious disease. We find that the global controllability region decreases with the increasing of 
the proportion of asymptomatic transmissions. We investigate the effect of reduction of 
individual’s mobility in defining the extent of the global controllability region and find that only 
severe mobility restrictions are sorting out considerable effects. 
 
We have continued our work on the determinants of the global controllability of E-WMD 
outbreaks by looking at optimal containment strategies. In the case of international Potential 
Pandemic Pathogens release the time needed to develop effective vaccines or deploy large scale 
pharmaceutical interventions spans weeks or months and control measures such as isolation, 
contact tracing and quarantine are the first line of defense in the case of new emerging infectious 
diseases. Achieving the containment of pandemic potential pathogens is however strongly 
dependent on the natural history of the disease. During period of performance of the grant we 
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have studied strategies for the containment of bio-WMD events relaxing the strict condition of 
the local containment at the source. We have been looking for a definition of controllability 
characterized by a region of parameters where, even though at the single population level the 
outbreak is not controllable, it is possible to control the global spreading of the bio-WMD event. 
In order to do that we have focused on the containment of local outbreaks by means of the 
isolation of symptomatic individuals as a function of the rate asymptomatic infections θ and the 
inherent transmissibility of the pathogenic agent (as measured by the basic reproductive number 
R0). In particular, we have considered those results in the context of very detailed agent based 
models that considers the network of contacts among individuals explicitly by creating a 
synthetic population that specifically considers household structure, workplace and school 
settings. This modeling approach allows explicit integration of different socio-demographic 
features via the construction of different synthetic populations.  We considered synthetic 
populations for Mexico, Italy and the Kingdom of Saudi Arabia (KSA). The latter especially was 
designed to address the recent threat of the MERS-Cov virus. The developed model allows the 

analysis of the progression of the epidemic at the level of single individual and allows us to assess 
the likelihood of containment and mitigation as a function of the disease dynamic for a wide 

 
Fig 46: Contour plot showing the maximum R0 contained with 80% success in the case of SARS-like outbreaks as a function of the fraction of 
pre-symptomatic transmission and the case isolation rate. 
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range of interventions including case isolation, household quarantine, schools and workplaces 
closure. A number of additional factors determine the effectiveness of containment policies, 
including how successful and timely is case isolation, the number of cases before 
implementation of control measures etc. For this reason, we performed a very extensive 
sensitivity analysis on many of the parameters that may affect the outbreak controllability. We 
focused on a parameter space for the dynamic of the disease that includes two basic regimes 
corresponding to influenza-like viruses and SARS-like viruses, respectively. Microsimulations 
results indicate that the case isolation rate is by far the most important parameter in controlling 
outbreaks while all others social distancing measures are generally producing incremental 
effects. Among the social distancing strategies, the most effective one is the reactive school 
closure. Moreover, social distancing effectiveness is depending on the socio-demographic 
setting. In Fig. 46 we show the maximum reproductive rate that can be contained as a function of 
the pre-symptomatic transmission and the effectiveness of the case isolation for the case of 
Mexico for SARS-like outbreak. It is possible to clearly see that effective containment for R0 >2.0 
can be achieved only for low fraction of pre-symptomatic transmission. More in general, we 
provide a thorough analysis of outbreak controllability in a large region of parameters 
characterizing the dynamic of respiratory emerging infectious diseases. The controllability of 
outbreaks is hardly achievable for influenza-like pathogens even in the occurrence of combined 
isolation and social distancing strategies because of the high fraction of non-detectable 
transmission. For SARS-like viruses, the generation time and the proportion of asymptomatic 
transmission are in region of the parameter space where timely implemented non-
pharmaceutical strategies may achieve containment probability of 90% or more. The results 
obtained here can be potentially used to discuss best control practices in for new emerging 
viruses such as the MERS-Cov. 
 
We have also used the developed model to assess the risk that the accidental escape from a 
laboratory of a novel transmissible viral strain would not be contained in the local community 
[44]. We developed a model that specifically considers laboratory workers and their contacts in 
microsimulations of the epidemic onset See Fig. 47. We consider the following non-
pharmaceutical interventions: isolation of the laboratory, laboratory workers’ household 
quarantine, contact tracing of cases and subsequent household quarantine of identified 
secondary cases, and school and workplace closure both preventive and reactive. The Model 
simulations suggest that there is a non-negligible probability (5% to 15%), strongly dependent 
on reproduction number and probability of developing clinical symptoms, that the escape event 
is not detected at all. We find that the containment depends on the timely implementation of 
non-pharmaceutical interventions and contact tracing and it may be effective (>90% probability 
per event) only for pathogens with moderate transmissibility (reproductive number no larger 
than R0  =  1.5). Containment depends on population density and structure as well, with a 
probability of giving rise to a global event that is three to five times lower in rural areas. Results 
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suggest that controllability of escape events is not guaranteed and, given the rapid increase of 
biosafety laboratories worldwide, this poses a serious threat to human health. Our findings may 
be relevant to policy makers when designing adequate preparedness plans and may have 
important implications for determining the location of new biosafety laboratories worldwide. 
 
 

4) Mathematical and statistical laws characterizing the non-local propagation of 
damage 

In the context of remote assessment of damages in large-scale complex networks, we did start to 
investigate analytically and computationally the effectiveness in assessing the integrity, damage 
and residual function of large-scale networks by quick, targeted packet-probing of the network. 
We consider the traceroute tool, actually used in Internet probing as sampling algorithm, and we 
focus on different attack strategies, namely random or connectivity based.  
 
Let us focus our attention in a network G(N,M), where N is the number of nodes and M is the set 
of vertices. We fix a number of sources 𝑆 = 𝑠!, 𝑠!,⋯ , 𝑠!  and a set of targets 𝑇 = 𝑡!,⋯ , 𝑡!  
among the N nodes. For each pair of target-source nodes the shortest path between joining the 
nodes is collected. After this operation is done for all source-target pairs, all the paths are merged 
resulting in sampled network G*(N*, M*), where the * represents the discovered portion of the 
network. We have developed a general approach based on a mean-field statistical analysis, which 
approximates the probability of edges and vertices to be detected as function of the number of 
sources, targets and the topological properties of the networks. In particular, we look at the case 
of damaged networks to develop the corresponding analytical and computational results 
quantifying the effectiveness in detecting the extent of network damage by packet probe 

 
Fig 47: Contact tracing. (A) Probabilities of detecting first and second generation cases (the latter conditioned to the detection of first 
generation cases) triggered by a traced index case. (B) Example of network of cases triggered by the initial infected laboratory worker 
(undetected in this example; the initial warning is triggered by a secondary case in the laboratory), and probability of case detection at time of 
intervention (Tw  +  Ti). Tw is the time corresponding to the first identification of one of the initial cases. Ti is the timere quired to link the initial 
infections to an accidental release of the modified influenza strain in the laboratory and to activate the containment interventions. 



HDTRA1-09-1-0039 Final Report 
 

Technical highlights |  102 

sampling techniques. We can imagine the network damage as resulting from different attack 
strategies. The attacks can be random or targeted, according to some centrality measure. We 
indicate these two topological strategies as Dr and Dc where r stands for random and c for 
centrality measure. Another particular case of interest are WMD attacks that affect confined 
geographical areas.  We indicate this local type of attack as Dg, where g stands for geographical.  
In order to asses the damage detection, a novel local quantity (per node) has been defined: 

Mi=1-(NiD/Ni) 
where Ni and NiD are the number of times that node i is detected in shortest path sampling the 
undamaged and damaged network respectively. If Mi=1 the node is not visible in the damaged 
network and very likely has been damaged. If Mi =0 the node is not damaged. If Mi<1 it implies 
that some of the shortest path present in the undamaged network have been compromised. 
These nodes are often at the periphery of the damaged region. Finally, Mi>1 implies that in the 
damaged network some nodes have become more central and thus are observed in more 
shortest paths than in the undamaged network. Those nodes are also potential candidates for 
overload and eventual avalanche of failures. The advantage of working with a local quantity is in 
the possibility of drawing geographically localized map as shown in Fig. 48.  
 

We can also introduce a global measure, M=ND/N (where ND is the number of nodes sampled in 
the damaged network and N is the number of nodes sampled in the un-damaged network) that 

 
Fig 48: We show the damage assessed by a traceroute-like network exploration in the case of a large localized damage of the Internet 
autonomous system  network in the area of Denver. It is possible to see the non-local effects (orange nodes) that ripple from the damaged area 
up to very distant nodes. 
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allows to quickly identify damages that induce large variations in the routing patterns of 
networks. We then propose a statistical method able to classify un-sampled nodes as damaged or 
functioning. In this approach, we first sample a given input network through traceroute probes 
obtaining an approximated view of it. We then execute a controlled damage by removing nodes 
according to different strategies and sample the damaged network supposing not to know 
where the damage is. During the sampling, we constantly monitor whether the probability not to 
have seen a node exceeds the expected value calculated on the basis of the sampling of the 
undamaged graph. If this happens, we conclude that the node has been damaged, and 
henceforth will not be discovered in the following of the sampling. We test the performance of 
the method by counting how many nodes, among the real damaged ones, are detected as 
missing and how many are wrongly considered damaged even though they are not.  
 
In the computational study we first focus on synthetic networks, either heterogeneous generated 
with the uncorrelated configuration model or homogeneous graphs obtained through the Erdos-
Renyi model (ER). Remarkably, the entity and location of the damage can be detected with a 
good approximation. The accuracy improves for nodes that play an important role in network's 
connectivity. Namely, the detection of damaged hubs is more reliable than the one of peripheral 
nodes. As a practical application, we consider the damage detection on the physical Internet at 
the level of Autonomous System (AS). We use free sampled AS topology provided by the Dimes 
project In this case, to simulate real damages, we remove nodes according to their geographical 
displacement. In doing so we artificially reproduce critical events such as large-scale power 
outages or localized WMD attacks. Also in this case our method correctly identifies the location 
and the extent of the damage with great accuracy. 
 
More precisely, the single node damage analysis is done by defining a statistical criterion that 
depends on the rate of observation given a rate of traceroute probing. We start again by 
monitoring the network {G} assuming that it is not damaged. The information gathered during 
the exploration process constitutes the null hypothesis of our measure, namely that no one of 
the nodes is damaged. Every time we send a traceroute probe we obtain a better approximation 
of the sampled network {G}* with increasing number of discovered nodes N*. At the same time 
we collect information about how many times a probe passes through a node i resulting on visit 
probability pi . The network is then damaged according to different strategies and sampled with 
traceroutes again. During the exploration a certain number of nodes are visited. By definition, 
these nodes are not damaged. The reason why a node is not seen can be either that it is actually 
damaged or that the sampling has missed it. To figure out which one of the two cases occurs we 
use p-value test applied to the visit probability pi. Namely, we calculate the probability of not 
seeing the node i after a number T of traceroute probes sent as (1- pi)T. The p-value test consist in 
imposing the equality between this quantity and an arbitrary confidence level C = (1- pi )Ti. By 
taking the logarithm on both side of the equation we obtain: 
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Ti = lnC/ln(1- pi ). 
 
If the node i has not been seen at least once before Ti probes have been sent then we can state 
that i is damaged. Here we are assuming that the visit probability of nodes does not change too 
much after the damage. This holds when the damage is a relatively small perturbation and does 
not change the connectivity of the network or its dynamical properties. 
The value of C tunes the number of probes to be sent before declaring a node damaged. If C is 
selected large, nodes will be declared as damaged early, leading to an overestimation of 
functioning nodes evaluated as damaged. We refer to these nodes as false positive damaged 
nodes (FPs). Conversely, if C is set to be small, more probes are needed to state if a node is 
damaged or not. The accuracy improves and the final response will eventually return only 
actually damaged nodes, the true positive damaged nodes (TPs). The optimal value of C is the 
one leading to the fastest but precise damage detection. We are finalizing a thorough set of 
simulations to identify optimal values of C in different basic synthetic network topologies that 
can be used a s a guidance in real networks. We also considered real Internet topology sample at 
the level of ASs where each node is an autonomous system of known geographical location and 
links represent the physical connections among them. Topologies are available for downloads in 
the DIMES project webpage in which each node is provided along with country and city it 
belongs to and with its geographical coordinates. We focus on the largest connected component 
of ASs that is constituted by 32,852 nodes. We test our method against two relevant classes of 
realistic attacks: all nodes in the same country are attacked, and all nodes inside a radius R with 
epicenter E are attacked. Both of these strategies are geography-based but they picture different 
scenarios. The first represents a deliberate shut down, for instance as happened in several 
countries during the Arab spring. The second one is referred to localized event such as WMD 
attack affecting an area of radius R. 
 

We fix the number of probing sources to Ns = 15 and the density of sampled address at rT = 0.2. 
According to one of the two strategies we remove ND nodes from the original AS network. The 
measure of damage detection should then be able to return not only the entity of the damage as 
a whole, but also tell us where the damage is localized. In order to achieve this goal we used the 
method discussed above. The choice of the confidence level is critical: a small confidence level 
corresponds to a very accurate measure of damaged nodes, while a big confidence level will 
produce a fast response. 
As an example of entire country switch off we decided to damage all the nodes in Italy. Fig 49 
shows the outcome of our method. We want to stress that the algorithm does not have any a 
priori information about where de damaged nodes are located. Despite that, the method clearly 
returns Italy as damaged country. Few other nodes are wrongly evaluated as damaged ones 
although they are not in Italy, and they constitute the FPs. One reason for the presence of FPs can 
be just statistical fluctuations. Another, more interesting, reason is that FP nodes turn out to be 
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strongly linked to the Italian TPs, so that the deletion of the latter prevents them to be visited. 
For the second type of geographical damage we decide to switch off all of ASs within a radius of 
50 km around the city of Boston. Again the method is able to detect the damage in the right 
location as shown in Fig 50. 
The choice for the optimal value of C is the one explained before, namely the larger value so that 
the precision is bigger than 0.9. In the case of damaging Italy this criterion sets C= 10-2 while for 
Boston C= 10-4. This difference is the result of the different damage extension. When damaging 
nodes within a certain radius, the visit of nodes outside that radius that are strongly related to the 
damaged ones is heavily affected, if not even prevented. This causes an overestimate of FPs that 
needs to be compensated by smaller value of C. Indeed, in this case it is interesting to note that 
FP nodes are located around the TP ones as a result of the inhibition effect induced by the 
damage.  

 
Fig 49: Analysis of the damage from recovered from the probing algorithm in the case of shut down of the entire Italian ASs network. Green 
circles are the working nodes, blue ones are the TPs while orange ones are the FPs. 
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We believe that our method is able to identify the entity of the damage and more importantly its 
location. The method we have proposed can represent a first step towards a strategy for the 
continuous monitoring of large scale Infrastructure networks aimed to the quick detection of 
damages by remote locations. Importantly, we studied only random displacement of sources and 
targets for the damage discovery. Detection of damages could be improved by opportune choice 
of sources and targets or by different schedule of probes delivery. The results of this work have 
been published in Physical Review E [45]. 
 

5) Applications to real-world epidemic threats 

While the work was focused primarily on WMD events, the theoretical understanding of socio-
technical networks properties and dynamics and the modeling tools developed during the 
project are of more general interest and applications as proven by work done during the project 
for two major biological threats occurred during the life of the project: the H1N1-2009 pandemic, 
and the Ebola virus West Africa epidemic. It is also work remarking that the applications to real-
world epidemic threats do not represent a deviation from the planned work, and have 
contributed to specific tasks of the project and produced advances to the planned work. 
At the early stage in the life of the project we have been involved in the effort of the international 
scientific community to chart the unfolding of the 2009 H1N1 pandemic. We had the occasion to 

 
Fig 50: Map of part of the United States east coast showing the outcome after damaging nodes around the city of Boston within a radius of 50 
km in the real AS network. Each circle represents one AS and its size is proportional to the degree. Green circles are the working ASs, blue ones 
are the TPs while orange ones are the FPs. 
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push side to side the research on multiscale reaction-diffusion networks while implementing and 
testing the results on the real time analysis of the H1N1 pandemic. The work done for the realistic 
modeling of the H1N1 pandemic has to be considered as a breakthrough that has shown for the 
first time, in a real world situation, the potential of computational methods in providing 
anticipations and forecasts that can be used in the support of the policy making and public 
health decision-making processes. The results obtained a very good agreement between 
predictions and real data, providing a strong and remarkable test of the quantitative level of the 
prediction offered by computational methods. The work carried out in developing computational 
techniques and simulations in multiscale networks were put to work to project the time course of 
the H1N1 flu epidemic in the United States. The simulations yielded projections and risk 
assessments of the epidemic outbreak based on the current knowledge of the disease 
parameters and took into account the human mobility networks on spatial scales between a few 
and a few thousand km.  
The necessity to provide new way to obtain real-time estimates for the H1N1 parameters have 
pushed our team to work on a new methodology that perform a likelihood analysis of the model 
with respect to chronological data of the diffusion processes. Our methodology allowed early 

 
 

Fig 51: Peak timing in the northern hemisphere: simulations and real data. Peak weeks of the epidemic activity in the baseline stochastic 
forecast output (SFO) (gray). The reference ranges of the simulated peak week were obtained by analysis of 2,000 stochastic realizations of the 
model for three different values of the seasonal rescaling factor, αmin, of 0.6, 0.65, and 0.7. The peak weeks reported by the surveillance for the 
fall/winter wave are shown as color gradients, whose limits correspond to the time interval at which an incidence of greater than 80% of the 
maximum incidence was observed. The numbers 1 to 5 indicate the type of data provided by the surveillance of each country, and the 
numbered weeks of the year correspond to the calendar used by the US Center for Disease Control and Prevention. 
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estimates of the transmission potential of the H1N1 virus by taking advantage of the multi-scale 
diffusion processes defined by the population mobility networks. The developed model is 
coupling countries worldwide and this feature is extremely relevant in evaluating the time 
pattern of emerging infectious diseases. For instance, given a set of initial conditions for a local 
outbreak of new strain of influenza, the timeline of the arrival of the epidemic in each country 
and the ensuing activity peak is mainly determined by the human mobility network that couples 
different region of the world, as also discussed in our work on mitigation and containment of 
“secondary” Epidemic (E-WMD) threats. has the human mobility built-in, allowing to consistently 
simulate the mobility of infectious individuals on the global scale, thus providing ab-initio 
estimates of the epidemic timeline in each country or urban area without assumption on mobility 
and case importation. The multiscale model was calibrated with a maximum likelihood analysis 
fitting the data of the chronology of the H1N1 epidemic. This was done by generating several 
millions simulations on the worldwide scale of the pandemic evolution and finding the set of 
parameters that best fit the actual evolution of the pandemic. This allowed us to estimate the 
transmission potential of the disease and the seasonality features. The model has been used to 
provide predictions of the unfolding of the epidemic in the USA and Europe. The method 
anticipated an early peak occurring in October/November in most of the countries. The 
predictions, of a quantitative nature, have been published in early September 2009 on BMC 
Medicine [46]. The agreement between the predictions and the actual unfolding of the pandemic 
has been proven to be remarkable (see Fig 51), and have been validated against the real data 
provided by agencies of more than 40 countries in a paper published in BMC Medicine in 2012 
[47]. The modeling effort has been used also for the analysis of vaccination campaigns, the effect 
of antiviral systematic use, the backtrack estimates of the actual number of cases in the Mexico, 
the projections for ICU occupancy and antibiotic usage [46], [48], [49].  

 
Fig 52: Air traffic connections from West African countries to the rest of the world 
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Another application of the work carried out during the life of the project is the use during the 
West Africa 2014 Ebola Virus Disease (EVD) epidemic of the multiscale network model and the 
network representation of origin-destination (O-D) data that explicitly track how many people 
travel from an origin location to a destination location regardless of the connections along the 
route (see Fig 52).  
 
The 2014 West African Ebola Outbreak is so far the largest and deadliest recorded in history.  
 
The most affected countries, Sierra Leone, Guinea, Liberia have been struggling to contain and to 
mitigate the outbreak. In July/August 2014 the rapid evolving situation of the Ebola Outbreak 
raised the need of real time analysis of the epidemic growth as well as an assessment of the risk 
of international dissemination, especially because the epidemic was affecting cities with major 
commercial airports. We have therefore used the results and tools developed in the past years of 
this grant to generate a 3-month ensemble forecast that provides quantitative estimates of the 

 
Fig 53 : Example of the projections routinely provided for the risk of international dissemination of the Ebola outbreak.   



HDTRA1-09-1-0039 Final Report 
 

Technical highlights |  110 

local transmission of Ebola virus disease in West Africa and the probability of international spread 
if the containment measures are not successful at curtailing the outbreak. We simulated the 
international spreading of the outbreak and provide the estimate for the probability of Ebola 
virus disease case importation in countries across the world. In assessing case importation by 
airline travel it is also important to consider if the EVD cases are detected during a connecting 
flight or at the final destination of the traveler. In our analysis we have implemented two different 
models: i) the EVD cases are identified after the first connecting flight; ii) the EVD cases are able to 
travel to their final destination. These models provide a minimum and maximum for the 
probability of case importation in each country, whose spread depends on whether the country’s 
transportation systems act as a traffic gateway or a destination hub. This modeling application 
has allowed us working with “segments” and O-D data in the case of airline mobility. We have 
initiated a thorough comparison of the worldwide segment and O-D airline transportation 
networks, assessing the impact of different data sources and the risk assessment process.  
The need for continuous updates of the results, as more and more data became available from 
the affected region, led to the development of a web repository (http://www.mobs-
lab.org/ebola.html) where we have been continuously updating our initial results. The modeling 

 
 

Fig 54 : Infographic summarizing some of the key results concerning the importation risk of ebola cases in the US. 
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activity focused on providing the probability of observing imported ebola cases in the US and 
across the world, the expected number of cases and their probability distribution (see Figs 53 and 
54). Specific work has been carried out also for the analysis of travel restrictions.  Our results have 
been published in PLOS Currents Outbreaks [50] and Eurosurveillance [47], both journals devoted 
to the rapid dissemination of results concerning epidemic threats. The results contained in these 
papers and the ensuing updates disseminated via web have been prominently featured in the 
media and discussed during an oversight hearing in the U.S. House of Representatives, Thursday, 
October 16, 2014. 
(http://news.sciencemag.org/health/2014/10/congressional-ebola-debate-invokes-plos-paper) 
 

 
In order to improve the spatial resolution and realism of the within-country analysis we have 
capitalized network models developed in the past years of this grant to develop a spatial agent-
based model that integrates socio-demographic data for Liberia to estimate the relative 
importance of the main settings for Ebola virus disease transmission. The model is based on 
synthetic population in which every household in Liberia is explicitly represented and includes 
hospitals, clinics and Ebola treatment units and the risk of spread to health-care workers working 
at them. We used the model to project the spatiotemporal spreading of the disease and to 
disentangle the effect of Ebola treatment unit availability, safe burial procedures, and the 
distribution of household protection kits in the aversion of Ebola virus disease cases (see Fig 55). 
This work has been published in Lancet Infectious Diseases [51], providing a modeling platform 
able to characterize the spatiotemporal spreading pattern of the Ebola outbreak down to the 

 
Fig 55: Spatio-temporal dynamic of the Ebola epidemic in Liberia. Data and modeling results comparison. 
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level of specific counties. The agent-based model has been refined and extended to Guinea and 
Sierra Leone for additional analysis and the assessment of the effect of ring vaccination trials in 
the elimination of the disease. The application of our work to the Ebola outbreak analysis has 
brought to the attention of the community the possibility of using large-scale multiscale network 
and agent based models for real-time forecast and situational awareness, and represents one of 
the success stories of the work carried out during the life of this project. 
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